1、热点块的定义

数据库的热点块,从简单了讲,就是极短的时间内对 少量数据块进行了过于频繁的访问。定义看起来总是很简单的,但实际在数据库中,我们要去观察或者确定热点块的问题,却不是那么简单了。要深刻地理解数据库 是怎么通过一些数据特征来表示热点块的,我们需要了解一些数据库在这方面处理机制的特性。

2、数据缓冲区的结构

我 们都知道,当查询开始的时候,进程首先去数据缓冲区中查找是否存在查询所需要的数据块,如果没有,就去磁盘上把数据块读到内存中来。在这个过程中,涉及到 数据缓冲区中LRU链的管理(8i开始以接触点计数为标准衡量buffer冷热从而决定buffer是在LRU的冷端还是热端),关于这部分内容,从 oracle concepts 中就能得到详尽的文档,我不准备去论述这部分内容,这也不是本文的重点。现在我们的重点是,到底进程是如何地去快速定位到自己所想要的block的,或者 如何快速确定想要的block不在内存中而去进行物理读的。

随着硬件的发展,内存越来越大,cache buffer也越来越大,我们如何才能在大量的内存中迅速定位到自己想要的block?总不能去所有buffer中遍历吧!在此数据库引出了hash的概 念(oracle中快速定位信息总是通过hash算法的,比如快速定位sql是否在shared pool size中存在就是通过hash value来定位的,也就是说shared pool size中对象也是通过hash table来管理的)。

了解一点数据结构的基本知识就知道,hash 的一大重要功能就是快速地查找。举个最简单的例子,假设我们有一个hash table 就是一个二维数组a[200][100],现在有1000个无序数字,我们要从这1000个数字里面查找某个值是否存在,或者说当我们接收到某个数字的时 候必须判断是否已经存在,当然,我们可以遍历这1000个数字,但这样的效率就很低。但现在我们考虑这样一种方法,那就是把1000个数字除以200,根 据其余数,放在a[200][100]里面(假设相同余数的最大数量不超过100),余数就是数组的下标。这样,平均来说一个数组a[i]里面可能有5个 左右的数字。当我们要去判别一个数字是否存在的时候,对这个数字除以200(这就是一个最简单的hash算法),根据余数i作为下标去数组a[i]中查 找,大约进行5次查找就能判别是否已经存在,这样通过开辟内存空间a[200][100]来换取了时间(当然hash 算法的选取和hash table的大小是一个很关键的问题)。

明白了基本的hash原理之后,我们再来看oracle的block的管理。数据库为这些 block也开辟了hash table,假设是a,则在一维上的数量是由参数_db_block_hash_buckets 来决定的,也就是存在hash table a[_db_block_hash_buckets ],从oracle8i开始,_db_block_hash_buckets =db_block_buffers*2。而一个block被放到哪个buckets里面,则 是由block的文件编号、块号(x$bh.dbarfl、 x$bh.dbablk对应了block的文件属于表空间中的相关编号和block在文件中的编号,x$bh是所有cache buffer的header信息,通过表格的形式可以查询)做hash 算法决定放到哪个bucket的,而bucket里面就存放了这些buffers的地址。

这样当我们要访问数据的时候,可以获得segment的 extent(可以通过dba_extents查到看,详细的信息来源这里不做探讨),自然知道要访问的文件编号和block编号,根据文件和block 编号可以通过hash算法计算出hash bucket,然后就可以去hash bucket里面去找block对应的buffer。

除此 之外,为了维护对这些block的访问和更改,oracle还提供了一种latch来保护这些block。因为要避免不同的进程随意地径直并发修改和访问 这些block,这样很可能会破坏block的结构的。latch是数据库内部提供的一种维护内部结构的一种低级锁,latch的生存周期极短(微秒以下 级别),进程加latch后快速的进行某个访问或者修改动作然后释放latch(关于latch不再过多的阐述,那可能又是需要另一篇文章才能阐述清 楚)。这种latch数量是通过参数_db_block_hash_latches 来定义的,一个latch对应的保护了多个buckets。从8i开始,这个参数的default规则为:

当cache buffers 少于2052 buffers

_db_block_hash_latches = power(2,trunc(log(2, db_block_buffers - 4) - 1))

当cache buffers多于131075 buffers

_db_block_hash_latches = power(2,trunc(log(2, db_block_buffers - 4) - 6))

当cache buffers位于2052与131075 buffers之间

_db_block_hash_latches = 1024

通 过这个规则我们可以看出,一个latch大约可以维护128个左右的 buffers。由于latch使得对block的操作的串行化(9i中有改进,读与 读可以并行,但读与写、写与写依然要串行),很显然我们可以想到一个道理,如果大量进程对相同的block进程进行操作,必然在这些latch上造成竞 争,也就是说必然形成latch的等待。这在宏观上就表现为系统级的等待。明白了这些原理,为我们下面的在数据库中的诊断奠定了基础。

3、如何确定热点对象

如果我们经常关注statspack报告,会发现有时候出现cache buffer chains的等待。这个cache buffer chains就是_db_block_hash_latches所定义的latch的总称,通过查询v$latch也可得到:

sys@OCN>select latch#,name,gets,misses,sleeps from v$latch where name like 'cache buffer%';

LATCH#               NAME                            GETS         MISSES         SLEEPS
----------    ------------------------------          ----------         ----------          ----------
93           cache buffers lru chain       54360446        21025              238
98           cache buffers chains          6760354603    1680007         27085
99           cache buffer handles          554532                6                      0

在 这个查询结果里我们可以看到记录了数据库启动以来的所有cahce buffer chains的latch的状况,gets表示总共有这么多次请求,misses表示请求失败的次数(加锁不成功),而sleeps 表示请求失败休眠的次数,通过sleeps我们可以大体知道数据库中latch的竞争是否严重,这也间接的表征了热点块的问题是否严重。由于 v$latch是一个聚合信息,我们并不能获得哪些块可能存在频繁访问。那我们要来看另一个view信息,那就是 v$latch_children,v$latch_children.addr记录的就是这个latch的地址

sys@OCN>select addr,LATCH#,CHILD#,gets,misses,sleeps from v$latch_children   where name = 'cache buffers chains' and rownum < 21;

ADDR             LATCH#       CHILD#          GETS         MISSES       SLEEPS
--------               ----------        ----------            ----------      ----------         ----------
91B23B74      98               1024             10365583        3957             33
91B23374      98               1023              5458174          964               25
91B22B74     98                1022              4855668         868               15
91B22374      98               1021              5767706         923                22
91B21B74     98                1020              5607116         934               31
91B21374     98                 1019              9389325        1111            25
91B20B74     98                1018              5060207         994             31
91B20374     98                1017              18204581      1145           18
91B1FB74     98                1016              7157081         920              23
91B1F374     98                1015              4660774         922              22
91B1EB74     98                1014              6954644        976              32
91B1E374     98                1013              4881891         970             19
91B1DB74     98               1012              5371135         971              28
91B1D374     98                1011              5154497        990              26
91B1CB74     98               1010              5013796         936              18
91B1C374     98               1009              5667446        939              25
91B1BB74     98               1008              4673421         883             14
91B1B374     98               1007              4589646         986              17
91B1AB74     98               1006             10380781        1020            20
91B1A374     98               1005              5142009          1110          19

20 rows selected.

到此我们可以根据v$latch_child.addr关联到对应的x$bh.hladdr(这是buffer header中记录的当前buffer所处的latch地址),通过x$bh可以获得块的文件编号和block编号。

sys@OCN>select dbarfil,dbablk  from x$bh
                   where hladdr in  (select addr  from

(select addr  from v$latch_children  order by sleeps desc)
                                                  where rownum < 11);

DBARFIL       DBABLK
----------         ----------
 4                     6498
40                   14915
15                   65564
28                  34909
40                 17987
1                    24554
8                    21404
39                  29669
28                 46173
28                 48221

……………………

由此我们就打通了cache buffers chains和具体block之间的关系,那再继续下来,知道了block,我们需要知道究竟是哪些segment。这个可以通过dba_extents来获得。

SQL>  select distinct a.owner,a.segment_name from   dba_extents a,
                         (select dbarfil,dbablk  from x$bh where hladdr in
                                       (select addr   from (select addr   from v$latch_children  order by sleeps desc)
                                         where rownum < 11)) b
                           where a.RELATIVE_FNO = b.dbarfil   and a.BLOCK_ID <= b.dbablk and a.block_id + a.blocks > b.dbablk;

OWNER                                      SEGMENT_NAME                 SEGMENT_TYPE
------------------------------      ------------------------------                   ------------------
ALIBABA                                     BIZ_SEARCHER                            TABLE
ALIBABA                                    CMNTY_USER_MESSAGE           TABLE
ALIBABA                                   CMNTY_VISITOR_INFO_ PK          INDEX
ALIBABA                                   COMPANY_AMID_IND                     INDEX
ALIBABA                                   COMPANY_DRAFT                          TABLE
ALIBABA                                   FEEDBACK_POST                          TABLE
ALIBABA                                   IM_BLACKLIST_PK                         INDEX
ALIBABA                                   IM_GROUP                                       TABLE
ALIBABA                                   IM_GROUP_LID_IND                     INDEX
ALIBABA                                  MEMBER                                           TABLE
ALIBABA                                   MEMBER_PK                                   INDEX
ALIBABA                                  MLOG$_SAMPLE                             TABLE

……………………

我们还有另外一种方式

SQL> select object_name   from dba_objects  where data_object_id in
                     (select obj   from x$bh  where hladdr in
                             (select addr  from (select addr from v$latch_children order by sleeps desc) 
                                         where rownum < 11)) ;

OBJECT_NAME
------------------------------------
I_CCOL2
RESOURCE_PLAN$
DUAL
FGA_LOG$
AV_TRANSACTION
COMPANY_DRAFT
MEMBER
SAMPLE
SAMPLE_GROUP
VERTICAL_COMPONENT
MEMBER_PK
SAMPLE_GROUP_PK
IM_BLACKLIST_PK
IM_CONTACT
IM_GROUP
CMNTY_USER_MESSAGE
CMNTY_VISITOR_INFO_PK
IM_OFFLINEMSG_TID_IND
OFFER
OFFER_PK
OFFER_EMAIL_IND
OFFER_DRAFT
CMNTY_USER_MESSAGE_TD_BSM_IND
CMNTY_MESSAGE_NUM_PK
BIZ_EXPRESS_MEMBER_ID_IND

……………………

到 这里我们基本能找到热点块对对应的对象。但实际上还有另外一个途径来获取这些信息,那就是和x$bh.tch 相关的一种方法。对 于8i开始oracle提供了接触点(touch count)来作为block是冷热的标志,在一定条件满足的情况下block被进程访问一次touch count 增加一,到某个标准之后被移动到LRU热端(关于touch count 在这里不做详细介绍,那又将是一大篇文章)。那在短时间内从某种意义上讲,touch count 大的block可能暗示着在当前某个周期内被访问次数比较多。

SQL> select distinct a.owner,a.segment_name,a.segment_type from  dba_extents a,
                  (select dbarfil,dbablk  from (select dbarfil,dbablk   from x$bh order by tch desc) where rownum < 11) b

where a.RELATIVE_FNO = b.dbarfil  and a.BLOCK_ID <= b.dbablk and a.block_id + a.blocks > b.dbablk;

OWNER                       SEGMENT_NAME                  SEGMENT_TYPE
---------------------       ------------------------------              ------------------
ALIBABA                   CMNTY_USER_MESSAGE         TABLE
ALIBABA                     MEMBER_PK                               INDEX
ALIBABA                  OFFER_DRAFT_GMDFY_IND     INDEX

同上面一样还有这个方法

SQL> select object_name  from dba_objects   where data_object_id in
                   (select obj   from (select obj    from x$bh order by tch desc)

where rownum < 11) ;
OBJECT_NAME
---------------------------------------------------
DUAL
MEMBER_PK
SAMPLE_GROUP_PK
CMNTY_USER_MESSAGE_TD_BSM_IND
OFFER_DRAFT_MID_GMDFY_IND
OFFER_MID_GPOST_IND
OFFER_DRAFT_PK
MEMBER_GLLOGIN_IND
OFFER_MID_STAT_GEXPIRE_IND
SAMPLE_MID_STAT_IND

10 rows selected.

到这里,我们寻找热点块和热点对象的工作算是完成了,但我们还并没有解决问题。

4、热点问题的解决

热 点块和热点对象我们都找到了,但是我们该怎么来解决这个问题呢?一般来说,热点块会导致cache buffers chains竞争等待,但并不是说cache buffer chains一定是因为热点块而起,在特别情况下有可能是因为latch数量的问题导致的,也就是一个latch管理的buffers数量太多而导致竞争 激烈。但是latch数量我们一般是不会轻易去设置的,这是oracle的隐藏参数。

实际上最有效的办法,是从优化sql入手,不良的 sql往往带来大量的不必要的访问,这是造成热点块的根源。比如本该通过全表扫描的查询却走了索引的range scan,这样将带来大量的对块的重复访问。从而形成热点问题。再或者比如不当地走了nested loops的表连接,也可能对非驱动表造成大量的重复访问。那么在这个时候,我们的目标就是找出这些sql来并尝试优化。在 statspack报告中,根 据报告中sql列表,我们如果是通过dba_extents确定的热点对象而不是通过dba_objects确定的,则可以通过查找出的热点 segment转换为对应的表,对于非分区的索引,index_name就是segment_name,通过dba_indexes很容易的找到对应的 table_name,对于分区表和分区索引也能通过和dba_tab_partition和dba_ind_partitions找到segment和 table的对应关系。通过这些table到statspack报告中去找相关的sql。

SQL> select sql_text   from stats$sqltext a,
      (select distinct a.owner,a.segment_name,a.segment_type from  dba_extents a,
                  (select dbarfil,dbablk  from (select dbarfil,dbablk from x$bh order by tch desc)

where rownum < 11) b
             where a.RELATIVE_FNO = b.dbarfil   and a.BLOCK_ID <= b.dbablk and a.block_id + a.blocks > b.dbablk) b
where a.sql_text like '%'||b.segment_name||'%' and b.segment_type = 'TABLE'   order by a.hash_value,a.address,a.piece;

SQL_TEXT
----------------------------------------------------------------
SELECT SEQ_SMS_TRANSACTION.nextval FROM DUAL
SELECT SEQ_BIZ_EXPRESS.nextval FROM DUAL
SELECT bizgroup.seq_grp_post.NextVal FROM DUAL
SELECT SEQ_SAMPLE.nextval FROM DUAL
SELECT bizgroup.seq_grp_user.NextVal FROM DUAL
SELECT SEQ_BIZ_SEARCHER.nextval FROM DUAL
SELECT SEQ_OFFER_DRAFT.nextval FROM DUAL
select seq_Company_Draft.NextVal from DUAL
SELECT SEQ_SAMPLE_GROUP.nextval FROM DUAL
SELECT SEQ_CMNTY_USER_MESSAGE.nextval FROM DUAL
SELECT SYSDATE FROM DUAL
select seq_News_Forum.NextVal from DUAL
SELECT SEQ_SMS_USER.nextval FROM DUAL
select seq_Biz_Member.NextVal from DUAL
select seq_Pymt_Managing.NextVal from DUAL
E= '+08:00' NLS_DUAL_CURRENCY = '$' NLS_TIME_FORMAT = 'HH.MI.SSX
SELECT SEQ_COMPANY_DRAFT.nextval FROM DUAL
SELECT 1 FROM DUAL
select seq_offer_draft.NextVal from DUAL
select seq_Biz_Express_Category.NextVal from DUAL

20 rows selected.

当然这里是从statspack搜集的stats$sqltext中去找的(你可以在statspack的文本报告中去找),实际上,我们可以直接在当前数据库中的v$sqlarea或者v$sqltext里面去找到这些sql,然后来尝试优化。

SQL> select sql_text   from v$sqltext a,
                       (select distinct a.owner,a.segment_name,a.segment_type from   dba_extents a,
                                   (select dbarfil,dbablk   from (select dbarfil,dbablk    from x$bh order by tch desc)

where rownum < 11) b
                          where a.RELATIVE_FNO = b.dbarfil   and a.BLOCK_ID <= b.dbablk and a.block_id + a.blocks > b.dbablk) b
          where a.sql_text like '%'||b.segment_name||'%' and b.segment_type = 'TABLE'  order by a.hash_value,a.address,a.piece;
SQL_TEXT
----------------------------------------------------------------
SELECT NULL FROM DUAL FOR UPDATE NOWAIT
SELECT SEQ_SMS_TRANSACTION.nextval FROM DUAL
SELECT SEQ_BIZ_EXPRESS.nextval FROM DUAL
SELECT SEQ_IM_GROUP.nextval FROM DUAL
SELECT SEQ_SAMPLE.nextval FROM DUAL
='DD-MON-RR HH.MI.SSXFF AM TZR' NLS_DUAL_CURRENCY='$' NLS_COMP='
SELECT SEQ_BIZ_SEARCHER.nextval FROM DUAL
SELECT SEQ_OFFER_DRAFT.nextval FROM DUAL
SELECT SEQ_SAMPLE_GROUP.nextval FROM DUAL
DD-MON-RR HH.MI.SSXFF AM TZR' NLS_DUAL_CURRENCY='$' NLS_COMP='BI
SELECT SEQ_CMNTY_USER_MESSAGE.nextval FROM DUAL
SELECT SYSDATE FROM DUAL
SELECT SEQ_SMS_USER.nextval FROM DUAL
IMESTAMP_TZ_FORMAT='DD-MON-RR HH.MI.SSXFF AM TZR' NLS_DUAL_CURRE
SELECT SEQ_COMPANY_DRAFT.nextval FROM DUAL
SELECT 1 FROM DUAL
SELECT USER FROM DUAL
SELECT DECODE('A','A','1','2') FROM DUAL

18 rows selected.

除 了优化sql外,当然对于热点的表或者索引来说,如果小的话,我们可以考虑cache在内存中,这样可能降低物理读提高sql运行速度(这并不会减少 cache buffer chains的访问次数),对于序列,我们可以对序列多设置一些cache。如果是并行服务器环境中的索引对象,并且这个索引是系列递增类型,我们可以考 虑反向索引(关于反向索引这里就不过多地做介绍了)。

5、热点块的其他相关症状

在数据库中还可能存在一些其他方面的热点块症状,通过v$waitstat的等待可以看出一些端倪,v$waitstat是根据数据缓冲区中各种block的类型(x$bh.class)而分类统计的等待状况。

sys@OCN>select * from v$waitstat;

CLASS                  COUNT            TIME
------------------       ----------           ----------
data block          1726977            452542
sort block                0                          0
save undo block    0                          0
segment header   40                      11
save undo header  0                         0
free list                     0                          0
extent map              0                          0
1st level bmb       611                    112
2nd level bmb       42                      13
3rd level bmb        0                          0
bitmap block           0                       0
bitmap index block    0                    0
file header block       13                  92
unused                           0                  0
system undo header      111          28
system undo block            7             0
undo header                  2765          187
undo block                     633            156

比 如在ASSM表空间出现之前,由于freelist的存在,如果表经常被并发的进程DML,则可能存在大量的data block的等待,或者有free list的等待。那么这个时候我们发现这样的segment之后需要考虑增加freelist数量。再比如经常发生长时间的DML的表被频繁地访问,这样 将会造成过多的对回滚段中块的访问,这时可能undo block 的等待会比较多。那么我们可能需要控制DML的时间长度或者想办法从应用程序入手来解决问题。如果是undo header的等待比较多,没使用undo tablespace 之前,可能需要考虑增加回滚段的数量。

总结

本文从热点块的原理入手,详细地由oracle的内部结构特征开始介绍了热点块的产生和表现特征。进而阐述了诊断热点对象和找出造成热点对象的sql的方法。并从解决热点问题方面提供了解决方向

深度分析ORACLE热点块问题的更多相关文章

  1. 深度分析如何在Hadoop中控制Map的数量

    深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数 ...

  2. MapReduce深度分析(一)

    MapReduce深度分析(一) 一.数据流向分析 图为MapReduce数据流向示意图 步骤1.输入文件从HDFS流向到Mapper节点.在一般情况下,存储数据的节点就是Mapper运行的节点,不需 ...

  3. 【JVM】深度分析Java的ClassLoader机制(源码级别)

    原文:深度分析Java的ClassLoader机制(源码级别) 为了更好的理解类的加载机制,我们来深入研究一下ClassLoader和他的loadClass()方法. 源码分析 public abst ...

  4. PhpStudy BackDoor2019 深度分析

    笔者<Qftm>原文发布<合天>:https://mp.weixin.qq.com/s?__biz=MjM5MTYxNjQxOA==&mid=2652852661&am ...

  5. [转帖]深度分析HBase架构

    深度分析HBase架构 https://zhuanlan.zhihu.com/p/30414252   原文链接(https://mapr.com/blog/in-depth-look-hbase-a ...

  6. 玩深度学习选哪块英伟达 GPU?有性价比排名还不够!

    本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完 ...

  7. 从Wannacry到WannaRen:螣龙安科带你深度分析勒索病毒原理

    从Wannacry到WannaRen:螣龙安科2020年4月7日,360CERT监测发现网络上出现一款新型勒索病毒wannaRen,该勒索病毒会加密windows系统中几乎所有的文件,并且以.Wann ...

  8. [转]Oracle数据块体系的详细介绍

    数据块概述Oracle对数据库数据文件(datafile)中的存储空间进行管理的单位是数据块(data block).数据块是数据库中最小的(逻辑)数据单位.与数据块对应的,所有数据在操作系统级的最小 ...

  9. const与readonly深度分析(.NET)

    前言 很多.NET的初学者对const和readonly的使用很模糊,本文就const和readonly做一下深度分析,包括: 1. const数据类型的优势 2. const数据类型的劣势 3. r ...

随机推荐

  1. 逻辑表+session

  2. DOM中XMLDOMnodelist的length属性的表示是:(选择1项)

    DOM中XMLDOMnodelist的length属性的表示是:(选择1项) A. 该对象中文本字符的长度 B. 该对象中元素节点的数量 C. 该对象中节点的数量 D. 该对象中文档对象的数量 解答: ...

  3. 编程之美 set 3 最大公约数问题

    解法 1. f(x,y) = f(y, y%x) (y>0) 辗转相除法 2. 取模运算较为耗时, 将取模变成相减. 但对极端数据效果很差, 比如 gcd(1000,1) 3. 分析公约数的特点 ...

  4. 1-1、superset开发环境搭建

    在对superset进行二次开发的过程中,往往需要搭建本地开发环境,修改后立即看到效果,下面我们就讲下开发环境的搭建. 1.打开PyCharm,在菜单栏上执行VCS-->Checkout fro ...

  5. PHP 预定义超全局数组/变量

    1.超全局变量:不用定义声明即可用.PHP有九种 2.$_GET:通过参数传递给当前脚本的变量的数组 浏览器页面-->(http协议)->apache-->php module--& ...

  6. 堪称神器的Windows软件推荐

    更多软件使用技巧.破解软件以及硬件选购知识,欢迎加入我的QQ群(701974765)与我们交流!! 先贴上软件列表,详细描述后期更新,可自行百度 TrafficMonitor CPU.内存.网速资源监 ...

  7. iOS 内存管理(转载)

     N久没维护这个博客了,从开始接触编程到现在已经三四年了.不太习惯写博客,这应该是个不好的习惯.所以从哪哪天开始,我得改变自己 (:       . 文采不太好,因此很多的文章都会借鉴他人的,但是我一 ...

  8. new 运算符创建一个用户定义的对象类型的实例或具有构造函数的内置对象的实例。

    new运算符 - JavaScript | MDN https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Operator ...

  9. order meeting room - 离散度30min

    w <meta charset="UTF-8"> <?php include('conn.php'); include('w_fun.php'); include ...

  10. SqlServer SqlBulkCopy批量插入 -- 多张表同时插入(事务)

    这段时间在解决一个多个表需要同时插入大量数据的问题,于是在网上找了下,查到说用SqlBulkCopy效率很高,实验后确实很快,10万条数据只要4秒钟,用ef要用40秒.但是我的还需两张表同时插入,且需 ...