51Nod 1352 集合计数(扩展欧几里德)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1352
题目大意:
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数。
提示:
对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第2个和第8个。
解题思路:
因为第一个元素+第二个元素等于N+1,所以可以列二元一次方程A*x+B*y=N+1求出其中一对解(x0,y0),并得到ra=A/gcd(A,B),rb=B/gcd(A,B),
接下来我们需要求出最小的x,根据方程,我们知道每当y-1则x-A/B(约分后为rb/ra),因为解是整数所以x每次只能减少rb,所以最小的x为x%rb。
于是得到(x1,y1)为x最小,y最大是的情况。接下来求总共有几组解,同理根据上面求最小的x的方法,y每次只能减少ra,x每次只能增加rb。
同时要满足两个条件:①A*x<=n ②y>0所以最后答案就为1+min(y/ra,(N-A*x)/(A*rb))。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
//ax+by=gcd(a,b),d为最后求出的gcd(a,b)
void ex_gcd(LL a,LL b,LL &x,LL &y,LL &d){
if(!b){
d=a;
x=;
y=;
return;
}
ex_gcd(b,a%b,y,x,d);
y=y-a/b*x;
} LL cal(LL a,LL b,LL n){
LL x,y,d;
n++; //n+1
ex_gcd(a,b,x,y,d);
if(n%d) //ax+by=c,gcd(a,b)|c不成立,则无解
return ;
x*=n/d;
y*=n/d;
LL rb=b/d,ra=a/d;
x=(x%rb+rb)%rb; //求出最小的x,每当y-1则x-a/b(约分后为rb/ra),因为解是整数所以x每次只能减少rb,所以最小的x为x%rb。
y=(n-a*x)/b; //最大的y
if(x==) //x不能为0
x+=rb;
if(a*x>n-) //无解
return ;
return +min(y/ra,(n--a*x)/(a*rb));//跟求最小的x时同理,但要满足:①a*x<=n-1 ②y>0
} int main(){
int t;
ios::sync_with_stdio(false);
cin>>t;
while(t--){
int n,a,b;
cin>>n>>a>>b;
cout<<cal(a,b,n)<<endl;
}
return ;
}
51Nod 1352 集合计数(扩展欧几里德)的更多相关文章
- 51Nod 1352 集合计数 扩展欧几里得
基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足 ...
- 51 Nod 1352 集合计数
大致题意:求ax+by=n+1的正数解的个数. 先看下面: 相信看过了通解的参数表示后已经知道怎么解了,贴代码: #include <bits/stdc++.h> #define ll l ...
- 51nod 1352:集合计数
1352 集合计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2 ...
- 51nod 1352 扩展欧几里德
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...
- CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元
题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...
- 扩展欧几里德 SGU 106
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106 题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
随机推荐
- 框架----Django之Form提交验证(二)
一.Form提交验证之(学生表.老师表.班级表)的添加和编辑实现案例 1. 浏览器访问 http://127.0.0.1:8000/student_list/ http://127.0.0.1:800 ...
- poj4052 Hrinity
pdf题面:传送门 题目大意:给定一些单词和一个句子,问有多少个单词在句子中出现过,如果一个但单词包含另一个单词,并且两个单词都出现过,那么只算最外层的单词(包含另一个单词的单词). 分析:这道题如果 ...
- hihocoder 1509异或排序
描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: (1).0 ≤ S < 2^60 (2).对于所有 1 ≤ i < n ,有 ( ...
- gflag使用
#include <gflags/gflags.h> #include <iostream> // 声明全局flag DEFINE_bool(my_bool, false, & ...
- 练习calico的网络policy
1.安装docker,kubelet kubeadm kubectl 1 ssh-keygen 2 cat .ssh/authorized_keys 3 cat .ssh/id_rsa.pub 4 s ...
- Prefetch count--预取数量
一.前言 前面提到如果有多个消费者同时订阅同一个Queue中的消息,Queue中的消息会被平摊给多个消费者.这时如果每个消息的处理时间不同,就有可能会导致某些消费者一直在忙,而另外一些消费者很快就处理 ...
- Maven手动添加依赖的jar文件到本地Maven仓库
原文出处:https://www.iteblog.com/archives/646.html 寫得很好,轉走僅供學習,望諒解! Apache Maven,是一个软件(特别是Java软件)项目管理及自动 ...
- 【机器学习】K-邻近算法的python 实现
#!/usr/bin/python # -*- coding: utf-8 -*- from numpy import * import operator def createDataSet(): ' ...
- 优美的代码:do...while(0)
1.背景 最近再看一个开源代码的时候,看到很多宏经常这么写的: #define XXX do{\ ...\ }) 一眼看到的时候就知道这一份代码执行一次,那么do...while还有什么意义呢?在查阅 ...
- Disruptor的使用
..................2015年的第一天................... 本文代码托管在 https://github.com/hupengcool/disruptor-start ...