冒泡法的算法最佳情况下的时间复杂度为什么是O(n)
我在许多书本上看到冒泡排序的最佳时间复杂度是O(n),即是在序列本来就是正序的情况下。
但我一直不明白这是怎么算出来的,因此通过阅读《算法导论-第2版》的2.2节,使用对插入排序最佳时间复杂度推算的方法,来计算冒泡排序的复杂度。
1. 《算法导论》2.2中对插入排序最佳时间复杂度的推算
在最好情况下,6和7总不被执行,5每次只被执行1次。因此,
时间复杂度为O(n)
2. 冒泡排序的时间复杂度
2.1 排序代码

public void bubbleSort(int arr[]) {
for(int i = 0, len = arr.length; i < len - 1; i++) {
for(int j = 0; j < len - i - 1; j++) {
if(arr[j + 1] < arr[j])
swap(arr, j, j + 1);
}
}
}

2.2 最佳情况
序列原本就是正序
2.3 最佳情况时间复杂度推算
语句 | cost | times |
i = 0, len = arr.length |
c1 | 1 |
i < len - 1 | c2 | n |
i++ | c3 | n - 1 |
j = 0 | c4 | n - 1 |
j < len - i - 1 | c5 | t(i=0) + t(i=1) + ... + t(i = n-2) |
j++ | c6 | t2(i=0) + t2(i=1) + ... + t2(i = n-2) |
arr[j + 1] < arr[j] | c7 | t3(i=0) + t3(i=1) + ... + t3(i = n-2) |
swap(arr, j, j + 1) | c8 | t4(i=0) + t4(i=1) + ... + t4(i = n-2) |
T(n) = c1 + c2n + c3(n - 1) + c4(n - 1) + c5[t1(i=0) + t1(i=1) + ... + t1(i = n-2)] + c6[t2(i=0) + t2(i=1) + ... + t2(i = n-2)] + c7[t3(i=0) + t3(i=1) + ... + t3(i = n-2)] + c8[t4(i=0) + t4(i=1) + ... + t4(i = n-2)];
当序列原本就是正序时,8从不被执行。因此
T(n) = c1 + c2n + c3(n - 1) + c4(n - 1) + c5[t1(i=0) + t1(i=1) + ... + t1(i = n-2)] + c6[t2(i=0) + t2(i=1) + ... + t2(i = n-2)] + c7[t3(i=0) + t3(i=1) + ... + t3(i = n-2)];
此时的时间复杂度应为O(n^2)。
可是网上和许多书上都写道是O(n),不知是否有人能帮我解答一下呢?
2.4 在Stackoverflow上问到答案了。
我原本的代码的时间复杂度确实应该是O(n^2),但算法可以改进,使最佳情况时为O(n)。改进后的代码为:

public void bubbleSort(int arr[]) {
boolean didSwap;
for(int i = 0, len = arr.length; i < len - 1; i++) {
didSwap = false;
for(int j = 0; j < len - i - 1; j++) {
if(arr[j + 1] < arr[j]) {
swap(arr, j, j + 1);
didSwap = true;
}
}
if(didSwap == false)
return;
}
}

冒泡法的算法最佳情况下的时间复杂度为什么是O(n)的更多相关文章
- master公式 ------ 求递归情况下的时间复杂度
剖析递归行为和递归行为时间复杂度的估算一个递归行为的例子T(N) = a*T(N/b) + O(N^d)1) log(b,a) > d -> 复杂度为O(N^log(b,a))2) log ...
- 算法最坏,平均和最佳情况(Worst, Average and Best Cases)-------geeksforgeeks 翻译
最坏,平均和最佳运行时间(Worst, Average and Best Cases) 在上一篇文章中,我们讨论到了渐进分析可以解决分析算法的问题,那么在这一篇中,我们用线性搜索来举例说明一下如何用渐 ...
- C程序数组算法 — 冒泡法排序【前冒 || 后冒】
第一种写法(前冒泡): /* C程序数组算法 - 冒泡法排序 * 此例子按照 大 -> 小 排序 * 原理:两两相比较,然后进行大小对调 * 比较次数: n^2 次 * 说明:冒泡排序是相对稳定 ...
- ruby冒泡算法删除店铺下的重复评论
Shop.each do |shop| if !shop.comments.blank? n = shop.comments.length for i in 0..n-1 for j in i+1.. ...
- MySQL分页优化中的“INNER JOIN方式优化分页算法”到底在什么情况下会生效?
本文出处:http://www.cnblogs.com/wy123/p/7003157.html 最近无意间看到一个MySQL分页优化的测试案例,并没有非常具体地说明测试场景的情况下,给出了一种经典的 ...
- [算法]体积不小于V的情况下的最小价值(0-1背包)
题目 0-1背包问题,问要求体积不小于V的情况下的最小价值是多少. 相关 转移方程很容易想,初始化的处理还不够熟练,可能还可以更简明. 使用一维dp数组. 代码 import java.util.Sc ...
- 冒泡排序最佳情况的时间复杂度,为什么是O(n)
冒泡排序最佳情况的时间复杂度,为什么是O(n) 我在许多书本上看到冒泡排序的最佳时间复杂度是O(n),即是在序列本来就是正序的情况下. 但我一直不明白这是怎么算出来的,因此通过阅读<算法导论-第 ...
- Java温故而知新-冒泡法排序
冒泡法排序是各种初学者在学习数组与循环结构时都会练习的一种简单排序算法. 冒泡法的精髓在于比较相邻的两个元素,较大的元素会不断的排到队伍后面去,就像水里的泡泡一样不断向上跑. 想像一下倒在一个透明玻璃 ...
- "二分法"-"折半法"-查找算法-之通俗易懂,图文+代码详解-java编程
转自http://blog.csdn.net/nzfxx/article/details/51615439 1.特点及概念介绍 下面给大家讲解一下"二分法查找"这个java基础查找 ...
随机推荐
- MSF下ms17_010_psexec模块使用技巧
0x01 前言 MS17-010 的psexec是针对Microsoft Windows的两款最受欢迎的漏洞进行攻击. CVE-2017-0146(EternalChampion / EternalS ...
- WebLogic XMLDecoder反序列化漏洞(CVE-2017-10271)复现
WebLogic XMLDecoder反序列化漏洞(CVE-2017-10271) -----by ba ...
- bzoj2396: 神奇的矩阵(矩阵乘法+随机化)
这题n三方显然会GG... 运用矩阵乘法的性质A*B*R=A*(B*R)=C*R,于是随机化出一个一列的R,就可以把复杂度降低成n方...大概率是不会错的 #include<iostream&g ...
- 【agc017E】Jigsaw
Portal -->agc017 Description 给你\(n\)块积木,每块积木由三个矩形组成,中间的矩形最高高度为\(h\),左边的矩形高度为\(a_i\)离底边高度为\(c_i\), ...
- Centos7中使用ipset
1.禁用firewalld systemctl stop firewalld systemctl disable firewalld 2.安装ipset yum -y install ipse ...
- Scrapy的安装--------Windows、linux、mac等操作平台
Scrapy安装 Scrapy的安装有多种方式,它支持Python2.7版本及以上或者是Python3.3版本及以上.下面来说py3环境下,scrapy的安装过程. Scrapy依赖的库比较多,至少需 ...
- ACM-ICPC2018 沈阳赛区网络预赛-D-Made In Heaven8
A*算法: A*,启发式搜索,是一种较为有效的搜索方法. 我们在搜索的时候,很多时候在当前状态,已经不是最优解了,但是我们却继续求解:这个就是暴力搜索浪费时间的原因. 我们在有些时候,往往可以根据一些 ...
- 树dp...吧 ZOJ 3949
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5568 Edge to the Root Time Limit: 1 Secon ...
- CF839 B 贪心
很玄的一道贪心题,大意是给出k排 XX - XXXX - XX这样的座位,有n个团体,要求不同团体不能相邻而坐,中间可以空一个座位或是由走廊隔开. 很明显最先想到可以以2为单位划分座位,但是中间4连座 ...
- Eclipse 断点调试
Eclipse 开发专用的Debug模式,用于发现问题解决问题. 1. 设置断点,程序会在改位置停止. 2. 按F5(step into), F6(step over)执行.F5指跳入,逐语句.会进入 ...