维护后面的position + 离线 + 线段树 bzoj 3585
3585: mex
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 918 Solved: 481
[Submit][Status][Discuss]
Description
有一个长度为n的数组{a1,a2,...,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。
Input
第一行n,m。
第二行为n个数。
从第三行开始,每行一个询问l,r。
Output
一行一个数,表示每个询问的答案。
Sample Input
2 1 0 2 1
3 3
2 3
2 4
1 2
3 5
Sample Output
2
3
0
3
HINT
数据规模和约定
对于100%的数据:
1<=n,m<=200000
0<=ai<=109
1<=l<=r<=n
对于30%的数据:
1<=n,m<=1000
Source
http://www.lydsy.com/JudgeOnline/problem.php?id=3585
思路:
其实这题的思路和bzoj 3339完全就一样啊,连离散化都不需要。->我的bzoj3339:http://www.cnblogs.com/heimao5027/p/6668367.html
因为对于n个数字,他的mex一定是<=n的,所以就算a[i]=1e9,那么我们就不要放到mex函数里面就好了,然后直接令next[i]=n+1即可,并不需要离散化
于是就这么简单的修改一下3339的代码,一下子就又过了= =
//看看会不会爆int!数组会不会少了一维!
//取物问题一定要小心先手胜利的条件
#include <bits/stdc++.h>
using namespace std;
#pragma comment(linker,"/STACK:102400000,102400000")
#define LL long long
#define ALL(a) a.begin(), a.end()
#define pb push_back
#define mk make_pair
#define fi first
#define se second
#define haha printf("haha\n")
const int maxn = + ;
vector<pair<int, int> > ve[maxn];
int tree[maxn << ], lazy[maxn << ];
int n, q;
int a[maxn], mex[maxn];
bool vis[maxn];
int nxt[maxn], pos[maxn]; void build_tree(int l, int r, int o){
lazy[o] = -;
if (l == r){
tree[o] = mex[l]; return ;
}
int mid = (l + r) / ;
build_tree(l, mid, o << );
build_tree(mid + , r, o << | );
tree[o] = min(tree[o << ], tree[o << | ]);
} void push_down(int o){
int lb = o << , rb = o << | ;
if (lazy[lb] == - || lazy[lb] > lazy[o]){
lazy[lb] = lazy[o];
tree[lb] = min(tree[lb], lazy[lb]);
}
if (lazy[rb] == - || lazy[rb] > lazy[o]){
lazy[rb] = lazy[o];
tree[rb] = min(tree[rb], lazy[rb]);
}
tree[o] = -;
} int query(int x, int l, int r, int o){
if (x == l && x == r){
return tree[o];
}
if (lazy[o] != -) push_down(o);
int mid = (l + r) / ;
if (x <= mid) return query(x, l, mid, o << );
if (x > mid) return query(x, mid + , r, o << | );
} void update(int ql, int qr, int l, int r, int o, int val){
if (ql <= l && qr >= r){
if (lazy[o] == -) lazy[o] = val;
lazy[o] = min(lazy[o], val);
tree[o] = min(lazy[o], tree[o]);
return ;
}
if (lazy[o] != -)push_down(o);
int mid = (l + r) / ;
if (ql <= mid) update(ql, qr, l, mid, o << , val);
if (qr > mid) update(ql, qr, mid + , r, o << | , val);
tree[o] = min(tree[o << ], tree[o << | ]);
}
int ans[maxn];
void solve(){
build_tree(, n, );
for (int i = ; i <= n; i++){
for (int j = ; j < ve[i].size(); j++){
int pos = ve[i][j].fi, id = ve[i][j].se;
ans[id] = query(pos, , n, );
}
int lb = i + , rb = nxt[i] - ;
if (lb <= rb) update(lb, rb, , n, , a[i]);
}
for (int i = ; i <= q; i++){
printf("%d\n", ans[i]);
}
} int main(){
cin >> n >> q;
for (int i = ; i <= n; i++) {
scanf("%d", a + i);
if (a[i] <= n + ) vis[a[i]] = true;
mex[i] = mex[i - ];
while (vis[mex[i]]) mex[i]++;
pos[i] = n + ;
}
for (int i = ; i <= n; i++) pos[i] = n + ;
for (int i = n; i >= ; i--){
if (a[i] >= n + ){
nxt[i] = n + ; continue;
}
nxt[i] = pos[a[i]];
pos[a[i]] = i;
}
for (int i = ; i <= q; i++){
int l, r; scanf("%d%d", &l, &r);
ve[l].pb(mk(r, i));
}
solve();
return ;
}
维护后面的position + 离线 + 线段树 bzoj 3585的更多相关文章
- 维护后面的position sg函数概念,离线+线段 bzoj 3339
3339: Rmq Problem Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1160 Solved: 596[Submit][Status][ ...
- BZOJ 3626 [LNOI2014]LCA 树剖+(离线+线段树 // 在线+主席树)
BZOJ 4012 [HNOI2015]开店 的弱化版,离线了,而且没有边权(长度). 两种做法 1 树剖+离线+线段树 这道题求的是一个点zzz与[l,r][l,r][l,r]内所有点的lcalca ...
- HDU 5700 区间交 离线线段树
区间交 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5700 Description 小A有一个含有n个非负整数的数列与m个区间.每个区间可以表示为 ...
- hdu 4288 离线线段树+间隔求和
Coder Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- bzoj2333 离线 + 线段树
https://www.lydsy.com/JudgeOnline/problem.php?id=2333 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来 ...
- 【BZOJ 3443】 3443: 装备合成 (离线+线段树)
3443: 装备合成 Time Limit: 15 Sec Memory Limit: 128 MBSubmit: 63 Solved: 31 Description [背景] lll69 ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
- LOJ 121 「离线可过」动态图连通性——LCT维护删除时间最大生成树 / 线段树分治
题目:https://loj.ac/problem/121 离线,LCT维护删除时间最大生成树即可.注意没有被删的边的删除时间是 m+1 . 回收删掉的边的节点的话,空间就可以只开 n*2 了. #i ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树|可并堆-左偏树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
随机推荐
- ASP.NET MVC5 学习系列之表单和HTML辅助方法
一.表单 (一)Action和Method特性 Action特性用以告知浏览器信息发往何处,因此,Action特性后面需要包含一个Url地址.这里的Url地址可以是相对的,也可以是绝对的.如下Form ...
- 用P4对数据平面进行编程
引言 SDN架构强调了对控制平面的可编程,数据平面只负责转发,导致数据平面很大程度上受制于功能固定的包处理硬件. P4语言的特性: 目标无关性:P4语言不受制于具体设备,所有可编程芯片都可以使用P4编 ...
- Lucene 高级搜索
自定义评分 public class MyScoreQuery { public void searchByScoreQuery(){ try { IndexSearcher searcher=new ...
- C++对象模型 多重继承与虚函数表
一 多重继承 1) 代码: Code#include <iostream>using namespace std; class B1{public: int x; virtua ...
- nginx 简介 http://nginx.org
Nginx(一) 官方技术文档网站:http://nginx.org Nginx的特性 1:各功能基于模块化设计,扩展性好 2:支持平滑重启,实现应用不下线部署 3:在多并发请求模型下,内存消 ...
- inline函数的总结
在函数返回类型前加上关键字inline就可以将函数指定为内联函数: inline const string& shortString(const string &s1, const s ...
- CPU测试--通过proc获取CPU信息
adb shell cat /proc/stat | grep cpu > totalcpu0 此处第一行的数值表示的是CPU总的使用情况,所以我们只要用第一行的数字计算就可以了.下表解析第一行 ...
- wpf下使用NotifyIcon
以前在winForm下使用过NotifyIcon,到wpf找不到了,在wpf下还是直接用WinForm里的那个NotifyIcon实现最小到系统托盘 定义一个NotifyIcon成员 : Notify ...
- 【.Net】HttpClient 的使用
class Program { public static HttpClient Client; static HttpResponseMessage response; static void Ma ...
- day06 小数据池和编码
一. 上次课内容回顾字典:由{}括起来. 每个元素用逗号隔开, key:value的形式存储数据key: 不可变的. 可哈希的.增删改查:1. 增加: 直接用新key来赋值. dict[key] = ...