RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就是说。RMQ问题是指求区间最值的问题。

Time Limit: 5000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

Submit Status

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range
of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest
cow in the group.

Input

Line 1: Two space-separated integers, N and Q

Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i

Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

1.朴素(遍历): 复杂度O(n)-O(qn)。

2.线段树 :复杂度O(n)-O(qlogn)。

3.ST(Sparse Table)算法 :O(nlogn)-O(q)

说下ST算法,由于每一个查询仅仅有O(1)。在处理大量查询的时候有优势。

<1>.预处理(动态规划DP)

对A[i]数列,F[i][j] 表示从第i个数起连续2^j 中的最大值(DP的状态),能够看到,F[i][0] 表示的是A[i](DP的初始值)。

最后。状态转移方程是

F[i][j]=max(F[i][j-1],F[i+2^(j-1)][j-1])

<2>查询

若查询区间为(a。b),区间长度为b-a+1,取k=log2(b-a+1),则Max(a。b)=max(F[a][k]。F[b-2^k+1][k])。

1.ST算法

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
using namespace std; const int MAXN = 50050; int mins[MAXN][20];
int maxs[MAXN][20]; void RMQ(int n)
{
for (int j = 1; (1 << j) <= n;j++)
for (int i = 1; i + (1 << j) - 1 <= n; i++)
{
int p = (1 << (j - 1));
mins[i][j] = min(mins[i][j - 1], mins[i + p][j - 1]);
maxs[i][j] = max(maxs[i][j - 1], maxs[i + p][j - 1]);
}
} int queryMin(int l, int r)
{
int k = log((double)(r - l + 1))/log(2.0);
return min(mins[l][k], mins[r - (1 << k) + 1][k]);
} int queryMax(int l, int r)
{
int k = log((double)(r - l + 1))/log(2.0);
return max(maxs[l][k], maxs[r - (1 << k) + 1][k]);
} int main()
{
int n, q;
scanf("%d%d", &n, &q);
int num;
for (int i = 1; i <= n; i++)
{
scanf("%d", &num);
maxs[i][0] = mins[i][0] = num;
}
RMQ(n);
int a, b;
int ans;
for (int i = 0; i < q; i++)
{
scanf("%d%d", &a, &b);
ans= queryMax(a, b) - queryMin(a, b);
printf("%d\n", ans);
}
}

2.线段树

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b) using namespace std; const int MAXN = 50050; int num[MAXN]; struct node
{
int r;
int l;
int Max;
int Min;
}tree[3*MAXN]; void build(int l, int r, int i)
{
tree[i].l = l; tree[i].r = r;
if (l == r)
{
tree[i].Max = tree[i].Min = num[l];
return;
}
int m = (l + r) >> 1, ls = i << 1, rs = ls + 1;
build(l, m, ls);
build(m + 1, r, rs);
tree[i].Max = max(tree[rs].Max, tree[ls].Max);
tree[i].Min = min(tree[rs].Min, tree[ls].Min);
} int queryMax(int l, int r, int i)
{
if (tree[i].l == l&&tree[i].r == r)
return tree[i].Max;
int m = (tree[i].l + tree[i].r) >> 1, ls = i << 1, rs = ls + 1;
if (r <= m) return queryMax(l, r, ls);
else if (l > m) return queryMax(l, r, rs);
else return max(queryMax(l, m, ls), queryMax(m + 1, r, rs));
} int queryMin(int l, int r, int i)
{
if (tree[i].l == l&&tree[i].r == r)
return tree[i].Min;
int m = (tree[i].l + tree[i].r) >> 1, ls = i << 1, rs = ls + 1;
if (r <= m) return queryMin(l, r, ls);
else if (l > m) return queryMin(l, r, rs);
else return min(queryMin(l, m, ls), queryMin(m + 1, r, rs));
} int main()
{
int n, q;
scanf("%d%d", &n, &q);
for (int i = 1; i <= n; i++)
scanf("%d", &num[i]);
build(1, n, 1);
int a, b;
int ans;
for (int i = 0; i < q; i++)
{
scanf("%d%d", &a, &b);
ans = queryMax(a, b, 1) - queryMin(a, b, 1);
printf("%d\n", ans);
}
}

參考了http://blog.csdn.net/niushuai666/article/details/6624672/

POJ - 3264 Balanced Lineup (RMQ问题求区间最值)的更多相关文章

  1. Poj 3264 Balanced Lineup RMQ模板

    题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...

  2. poj 3264 Balanced Lineup (RMQ)

    /******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...

  3. poj 3264 Balanced Lineup【RMQ-ST查询区间最大最小值之差 +模板应用】

    题目地址:http://poj.org/problem?id=3264 Sample Input 6 3 1 7 3 4 2 5 1 5 4 6 2 2 Sample Output 6 3 0分析:标 ...

  4. POJ 3264 Balanced Lineup 【线段树/区间最值差】

    Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 62103 Accepted: 29005 Cas ...

  5. POJ 3264 Balanced Lineup RMQ ST算法

    题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问 ...

  6. poj 3264 Balanced Lineup (RMQ算法 模板题)

    RMQ支持操作: Query(L, R):  计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...

  7. POJ 3264 Balanced Lineup -- RMQ或线段树

    一段区间的最值问题,用线段树或RMQ皆可.两种代码都贴上:又是空间换时间.. RMQ 解法:(8168KB 1625ms) #include <iostream> #include < ...

  8. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

  9. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

随机推荐

  1. Java集合类ArrayList循环中删除特定元素

    在项目开发中,我们可能往往需要动态的删除ArrayList中的一些元素. 一种错误的方式: <pre name="code" class="java"&g ...

  2. web.xml加载顺序 [转载]

    一 1.启动一个WEB项目的时候,WEB容器会去读取它的配置文件web.xml,读取<listener>和<context-param>两个结点. 2.紧急着,容创建一个Ser ...

  3. [Android Studio] Android Studio快速定位当前打开的文件在哪个目录(package)下

    转载自:http://blog.csdn.net/hyr83960944/article/details/38067499 在Eclipse中有一个很好的功能,就是比如我打开一个AActivity,左 ...

  4. Mahout构建图书推荐系统【一起学Mahout】

    阅读导读: 1.Mahout中推荐过滤算法支持哪两种算法? 2.用java代码怎样计算男性用户打分过的图书? 3.itemEuclidean.userEuclideanNoPref各自是什么算法? 1 ...

  5. 【属性动画示例】Property Animation

    MainActivity 属性动画常用操作 // 可操控的属性有:alpha:x/y:scaleX/scaleY:rotation/rotationX/rotationY:transitionX/tr ...

  6. Android之旅 自我图示总结四大组件

    最近学完了Android的四大组件的基础知识,自己总结了一个图示,希望自己看到这个图的时候能回忆起相关的知识点,与大家分享!

  7. 基于java语言的给cube添加custom view来实现权限控制

    今天是农历2014年的最后一个工作日了,在这里提前祝大家新年快乐.羊年大吉!当然本人今天也拿出来点儿真东西,做为献给大家的新年礼物,依次共勉. 下文主要讲述的是使用Java代码来完成对cube基于部门 ...

  8. [JS Compose] 3. Use chain for composable error handling with nested Eithers (flatMap)

    We refactor a function that uses try/catch to a single composed expression using Either. We then int ...

  9. Codeforces Round #250 (Div. 1) D. The Child and Sequence

    D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...

  10. C#基础视频教程7.4 如何编写简单游戏

    接下来我们实现整个的游戏流程,当点击开始游戏,则需要三个事情开始运行 1 小鸟初始化并往下掉(当然还是可以用按钮让他飞一下) 2 每隔一定时间从左侧产生一个管子(宽度和高度随机,产生周期2000ms左 ...