RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就是说。RMQ问题是指求区间最值的问题。

Time Limit: 5000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

Submit Status

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range
of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest
cow in the group.

Input

Line 1: Two space-separated integers, N and Q

Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i

Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

1.朴素(遍历): 复杂度O(n)-O(qn)。

2.线段树 :复杂度O(n)-O(qlogn)。

3.ST(Sparse Table)算法 :O(nlogn)-O(q)

说下ST算法,由于每一个查询仅仅有O(1)。在处理大量查询的时候有优势。

<1>.预处理(动态规划DP)

对A[i]数列,F[i][j] 表示从第i个数起连续2^j 中的最大值(DP的状态),能够看到,F[i][0] 表示的是A[i](DP的初始值)。

最后。状态转移方程是

F[i][j]=max(F[i][j-1],F[i+2^(j-1)][j-1])

<2>查询

若查询区间为(a。b),区间长度为b-a+1,取k=log2(b-a+1),则Max(a。b)=max(F[a][k]。F[b-2^k+1][k])。

1.ST算法

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
using namespace std; const int MAXN = 50050; int mins[MAXN][20];
int maxs[MAXN][20]; void RMQ(int n)
{
for (int j = 1; (1 << j) <= n;j++)
for (int i = 1; i + (1 << j) - 1 <= n; i++)
{
int p = (1 << (j - 1));
mins[i][j] = min(mins[i][j - 1], mins[i + p][j - 1]);
maxs[i][j] = max(maxs[i][j - 1], maxs[i + p][j - 1]);
}
} int queryMin(int l, int r)
{
int k = log((double)(r - l + 1))/log(2.0);
return min(mins[l][k], mins[r - (1 << k) + 1][k]);
} int queryMax(int l, int r)
{
int k = log((double)(r - l + 1))/log(2.0);
return max(maxs[l][k], maxs[r - (1 << k) + 1][k]);
} int main()
{
int n, q;
scanf("%d%d", &n, &q);
int num;
for (int i = 1; i <= n; i++)
{
scanf("%d", &num);
maxs[i][0] = mins[i][0] = num;
}
RMQ(n);
int a, b;
int ans;
for (int i = 0; i < q; i++)
{
scanf("%d%d", &a, &b);
ans= queryMax(a, b) - queryMin(a, b);
printf("%d\n", ans);
}
}

2.线段树

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b) using namespace std; const int MAXN = 50050; int num[MAXN]; struct node
{
int r;
int l;
int Max;
int Min;
}tree[3*MAXN]; void build(int l, int r, int i)
{
tree[i].l = l; tree[i].r = r;
if (l == r)
{
tree[i].Max = tree[i].Min = num[l];
return;
}
int m = (l + r) >> 1, ls = i << 1, rs = ls + 1;
build(l, m, ls);
build(m + 1, r, rs);
tree[i].Max = max(tree[rs].Max, tree[ls].Max);
tree[i].Min = min(tree[rs].Min, tree[ls].Min);
} int queryMax(int l, int r, int i)
{
if (tree[i].l == l&&tree[i].r == r)
return tree[i].Max;
int m = (tree[i].l + tree[i].r) >> 1, ls = i << 1, rs = ls + 1;
if (r <= m) return queryMax(l, r, ls);
else if (l > m) return queryMax(l, r, rs);
else return max(queryMax(l, m, ls), queryMax(m + 1, r, rs));
} int queryMin(int l, int r, int i)
{
if (tree[i].l == l&&tree[i].r == r)
return tree[i].Min;
int m = (tree[i].l + tree[i].r) >> 1, ls = i << 1, rs = ls + 1;
if (r <= m) return queryMin(l, r, ls);
else if (l > m) return queryMin(l, r, rs);
else return min(queryMin(l, m, ls), queryMin(m + 1, r, rs));
} int main()
{
int n, q;
scanf("%d%d", &n, &q);
for (int i = 1; i <= n; i++)
scanf("%d", &num[i]);
build(1, n, 1);
int a, b;
int ans;
for (int i = 0; i < q; i++)
{
scanf("%d%d", &a, &b);
ans = queryMax(a, b, 1) - queryMin(a, b, 1);
printf("%d\n", ans);
}
}

參考了http://blog.csdn.net/niushuai666/article/details/6624672/

POJ - 3264 Balanced Lineup (RMQ问题求区间最值)的更多相关文章

  1. Poj 3264 Balanced Lineup RMQ模板

    题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...

  2. poj 3264 Balanced Lineup (RMQ)

    /******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...

  3. poj 3264 Balanced Lineup【RMQ-ST查询区间最大最小值之差 +模板应用】

    题目地址:http://poj.org/problem?id=3264 Sample Input 6 3 1 7 3 4 2 5 1 5 4 6 2 2 Sample Output 6 3 0分析:标 ...

  4. POJ 3264 Balanced Lineup 【线段树/区间最值差】

    Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 62103 Accepted: 29005 Cas ...

  5. POJ 3264 Balanced Lineup RMQ ST算法

    题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问 ...

  6. poj 3264 Balanced Lineup (RMQ算法 模板题)

    RMQ支持操作: Query(L, R):  计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...

  7. POJ 3264 Balanced Lineup -- RMQ或线段树

    一段区间的最值问题,用线段树或RMQ皆可.两种代码都贴上:又是空间换时间.. RMQ 解法:(8168KB 1625ms) #include <iostream> #include < ...

  8. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

  9. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

随机推荐

  1. Virtualbox虚拟机安装CentOS 6.5图文详细教程

    http://blog.csdn.net/risingsun001/article/details/37934975

  2. 分享一个基于 Node.js 的 Web 开发框架 - Nokitjs

    简介 Nokit 是一个简单易用的基于 Nodejs 的 Web 开发框架,默认提供了 MVC / NSP / RESTful 等支持,并提供对应项目模板.管理工具. 资源 GitHub https: ...

  3. Run Redis On Windows

    If you go to the current version and open up the bin > release folder, you'll get a ZIP file cont ...

  4. 【深夜福利】Caffe 添加自己定义 Layer 及其 ProtoBuffer 參数

    在飞驰的列车上,无法入眠.外面阴雨绵绵,思绪被拉扯到天边. 翻看之前聊天,想起还欠一个读者一篇博客. 于是花了点时间整理一下之前学习 Caffe 时添加自己定义 Layer 及自己定义 ProtoBu ...

  5. Hibernate之一对一关联映射

    Hibernate中一对一关联映射共分为两种,一种是一对一主键关联映射,另一种是一对一唯一外键关联映射.下面简单介绍一下这两种关联映射. 一对一主键关联映射 一对一主键关联映射的两个实体有相同的ID. ...

  6. poj 1260 Pearls 斜率优化dp

    这个题目数据量很小,但是满足斜率优化的条件,可以用斜率优化dp来做. 要注意的地方,0也是一个决策点. #include <iostream> #include <cstdio> ...

  7. js 构造函数(construction)与原型(prototype)

    1.面向对象:js原型 java有class和instance,js仅仅有构造函数(function Cat(name,age){this.name=name;this.age=age}),为了实现数 ...

  8. 区域医疗移动医疗影像解决方案--基于HTML5的PACS--HTML5图像处理【转】

    基于HTML5的PACS--图像伪彩 摘要: 要查看此系统更多的图像处理功能请参考:区域医疗移动医疗影像解决方案--基于HTML5的PACS--HTML5图像处理套用句广告语:哪里不会点哪里,so e ...

  9. 软件开发工具GCC

    重点掌握以下知识点: 了解gcc编译器的下载和安装方法,包括嵌入式交叉编译平台搭建的方法 重点掌握gcc的基本编译流程和编译方法 重点掌握gcc编译的高级操作及选项 了解gcc编译器性能分析工具,包括 ...

  10. MSCRM 2011 JavaScript 开发文档

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvem91eXVqaWUxMTI3/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...