基于ZooKeeper实现——分布式锁与实现
引言
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
ZooKeeper的架构通过冗余服务实现高可用性。因此,如果第一次无应答,客户端就可以询问另一台ZooKeeper主机。ZooKeeper节点将它们的数据存储于一个分层的命名空间,非常类似于一个文件系统或一个前缀树结构。客户端可以在节点读写,从而以这种方式拥有一个共享的配置服务。更新是全序的。
基于ZooKeeper分布式锁的流程
- 在zookeeper指定节点(locks)下创建临时顺序节点node_n
- 获取locks下所有子节点children
- 对子节点按节点自增序号从小到大排序
- 判断本节点是不是第一个子节点,若是,则获取锁;若不是,则监听比该节点小的那个节点的删除事件
- 若监听事件生效,则回到第二步重新进行判断,直到获取到锁
具体实现
下面就具体使用java和zookeeper实现分布式锁,操作zookeeper使用的是apache提供的zookeeper的包。
- 通过实现Watch接口,实现process(WatchedEvent event)方法来实施监控,使CountDownLatch来完成监控,在等待锁的时候使用CountDownLatch来计数,等到后进行countDown,停止等待,继续运行。
- 以下整体流程基本与上述描述流程一致,只是在监听的时候使用的是CountDownLatch来监听前一个节点。
分布式锁
import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat; import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock; /**
* Created by liuyang on 2017/4/20.
*/
public class DistributedLock implements Lock, Watcher {
private ZooKeeper zk = null;
// 根节点
private String ROOT_LOCK = "/locks";
// 竞争的资源
private String lockName;
// 等待的前一个锁
private String WAIT_LOCK;
// 当前锁
private String CURRENT_LOCK;
// 计数器
private CountDownLatch countDownLatch;
private int sessionTimeout = 30000;
private List<Exception> exceptionList = new ArrayList<Exception>(); /**
* 配置分布式锁
* @param config 连接的url
* @param lockName 竞争资源
*/
public DistributedLock(String config, String lockName) {
this.lockName = lockName;
try {
// 连接zookeeper
zk = new ZooKeeper(config, sessionTimeout, this);
Stat stat = zk.exists(ROOT_LOCK, false);
if (stat == null) {
// 如果根节点不存在,则创建根节点
zk.create(ROOT_LOCK, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
}
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
} // 节点监视器
public void process(WatchedEvent event) {
if (this.countDownLatch != null) {
this.countDownLatch.countDown();
}
} public void lock() {
if (exceptionList.size() > 0) {
throw new LockException(exceptionList.get(0));
}
try {
if (this.tryLock()) {
System.out.println(Thread.currentThread().getName() + " " + lockName + "获得了锁");
return;
} else {
// 等待锁
waitForLock(WAIT_LOCK, sessionTimeout);
}
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
} public boolean tryLock() {
try {
String splitStr = "_lock_";
if (lockName.contains(splitStr)) {
throw new LockException("锁名有误");
}
// 创建临时有序节点
CURRENT_LOCK = zk.create(ROOT_LOCK + "/" + lockName + splitStr, new byte[0],
ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
System.out.println(CURRENT_LOCK + " 已经创建");
// 取所有子节点
List<String> subNodes = zk.getChildren(ROOT_LOCK, false);
// 取出所有lockName的锁
List<String> lockObjects = new ArrayList<String>();
for (String node : subNodes) {
String _node = node.split(splitStr)[0];
if (_node.equals(lockName)) {
lockObjects.add(node);
}
}
Collections.sort(lockObjects);
System.out.println(Thread.currentThread().getName() + " 的锁是 " + CURRENT_LOCK);
// 若当前节点为最小节点,则获取锁成功
if (CURRENT_LOCK.equals(ROOT_LOCK + "/" + lockObjects.get(0))) {
return true;
} // 若不是最小节点,则找到自己的前一个节点
String prevNode = CURRENT_LOCK.substring(CURRENT_LOCK.lastIndexOf("/") + 1);
WAIT_LOCK = lockObjects.get(Collections.binarySearch(lockObjects, prevNode) - 1);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
return false;
} public boolean tryLock(long timeout, TimeUnit unit) {
try {
if (this.tryLock()) {
return true;
}
return waitForLock(WAIT_LOCK, timeout);
} catch (Exception e) {
e.printStackTrace();
}
return false;
} // 等待锁
private boolean waitForLock(String prev, long waitTime) throws KeeperException, InterruptedException {
Stat stat = zk.exists(ROOT_LOCK + "/" + prev, true); if (stat != null) {
System.out.println(Thread.currentThread().getName() + "等待锁 " + ROOT_LOCK + "/" + prev);
this.countDownLatch = new CountDownLatch(1);
// 计数等待,若等到前一个节点消失,则precess中进行countDown,停止等待,获取锁
this.countDownLatch.await(waitTime, TimeUnit.MILLISECONDS);
this.countDownLatch = null;
System.out.println(Thread.currentThread().getName() + " 等到了锁");
}
return true;
} public void unlock() {
try {
System.out.println("释放锁 " + CURRENT_LOCK);
zk.delete(CURRENT_LOCK, -1);
CURRENT_LOCK = null;
zk.close();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
}
} public Condition newCondition() {
return null;
} public void lockInterruptibly() throws InterruptedException {
this.lock();
} public class LockException extends RuntimeException {
private static final long serialVersionUID = 1L;
public LockException(String e){
super(e);
}
public LockException(Exception e){
super(e);
}
}
}
测试代码:
public class Test {
static int n = 500; public static void secskill() {
System.out.println(--n);
} public static void main(String[] args) { Runnable runnable = new Runnable() {
public void run() {
DistributedLock lock = null;
try {
lock = new DistributedLock("127.0.0.1:2181", "test1");
lock.lock();
secskill();
System.out.println(Thread.currentThread().getName() + "正在运行");
} finally {
if (lock != null) {
lock.unlock();
}
}
}
}; for (int i = 0; i < 10; i++) {
Thread t = new Thread(runnable);
t.start();
}
}
}
转载:http://www.cnblogs.com/liuyang0/p/6800538.html
基于ZooKeeper实现——分布式锁与实现的更多相关文章
- 基于 Zookeeper 的分布式锁实现
1. 背景 最近在学习 Zookeeper,在刚开始接触 Zookeeper 的时候,完全不知道 Zookeeper 有什么用.且很多资料都是将 Zookeeper 描述成一个“类 Unix/Linu ...
- 【连载】redis库存操作,分布式锁的四种实现方式[一]--基于zookeeper实现分布式锁
一.背景 在电商系统中,库存的概念一定是有的,例如配一些商品的库存,做商品秒杀活动等,而由于库存操作频繁且要求原子性操作,所以绝大多数电商系统都用Redis来实现库存的加减,最近公司项目做架构升级,以 ...
- 分布式锁(3) ----- 基于zookeeper的分布式锁
分布式锁系列文章 分布式锁(1) ----- 介绍和基于数据库的分布式锁 分布式锁(2) ----- 基于redis的分布式锁 分布式锁(3) ----- 基于zookeeper的分布式锁 代码:ht ...
- 基于Zookeeper的分布式锁(干干干货)
原文地址: https://juejin.im/post/5df883d96fb9a0163514d97f 介绍 为什么使用锁 锁的出现是为了解决资源争用问题,在单进程环境下的资源争夺可以使用 JDK ...
- 基于Zookeeper的分布式锁
实现分布式锁目前有三种流行方案,分别为基于数据库.Redis.Zookeeper的方案,其中前两种方案网络上有很多资料可以参考,本文不做展开.我们来看下使用Zookeeper如何实现分布式锁. 什么是 ...
- 10分钟看懂!基于Zookeeper的分布式锁
实现分布式锁目前有三种流行方案,分别为基于数据库.Redis.Zookeeper的方案,其中前两种方案网络上有很多资料可以参考,本文不做展开.我们来看下使用Zookeeper如何实现分布式锁. 什么是 ...
- 基于zookeeper实现分布式锁和基于redis实现分布所的区别
1,实现方式不同 zookeeper实现分布式锁:通过创建一个临时节点,创建的成功节点的服务则抢占到分布式锁,可做业务逻辑.当业务逻辑完成,连接中断,节点消失,继续下一轮的锁的抢占. redis实现分 ...
- 基于ZooKeeper的分布式锁和队列
在分布式系统中,往往需要一些分布式同步原语来做一些协同工作,上一篇文章介绍了Zookeeper的基本原理,本文介绍下基于Zookeeper的Lock和Queue的实现,主要代码都来自Zookeeper ...
- 基于zookeeper实现分布式锁
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Hadoop和Hbase的重要组件. 特性: 1.节点数据结构,znode是一个跟Unix文件系统路径相似的节点,可以往这个节点存 ...
随机推荐
- hihoCoder #1582 : Territorial Dispute 凸包
#1582 : Territorial Dispute 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In 2333, the C++ Empire and the Ja ...
- 「Django」数据库访问优化
先做性能分析 - 两个工具 django.db.connection from django.db import connection# contextprint connection.queries ...
- CF821 D. Okabe and City 图 最短路
Link 题意:给出$n*m$大小的地图,已有$k$盏灯亮,人从左上角出发,右下角结束,期间必须走路灯点亮的地方,他可以在任意时刻消耗一枚硬币点亮一行或一列灯,他最多同时点亮一行或一列灯,要想点亮别的 ...
- 在ASP.NET中备份和还原数据库
昨天看了<C#项目实录>中的进销存管理系统,和其他书里讲的案例一样,无非也就是数据库增删查改,但是这个进销存系统中有一个备份和还原数据库的功能,蛮有兴趣的,看了一下代码,原来如此, ...
- 【BZOJ】3238: [Ahoi2013]差异
[题意]给定长度为n的小写字母字符串,令Ti表示以i开头的后缀,求Σ[Ti+Tj-2*lcp(Ti,Tj)],1<=i<j<=n. [算法]后缀自动机 [题解]Σ(Ti+Tj)只与n ...
- centos6.5 导入matplotlib报错 No module named '_tkinter
1.解决方案 在centos系统下,导入matplotlib时,出现ImportError: No module named ‘_tkinter’的错误,首先 yum list installed | ...
- react input 设置默认值
1.text类型 <input type="text" value={默认值} /> ,这种写法可以显示默认值,但不能对输入框进行编辑 正确写法: <input ...
- weblogic 开启注意问题
1.关闭防火墙 service iptables stop chkconfig iptables off 2.weblogic unable to get file lock问题 我的解决办法是ps ...
- SQLite3 安装、基本操作
1. 安装SQLite3 sudo apt-get install sqlite3 2. 安装Sqlite3编译需要的工具包 如果,你需要的话可以安装该工具包.只是为了体验一把,可以不安装.该项是可选 ...
- 64_s1
SAASound-3.2-17.fc26.i686.rpm 13-Feb-2017 22:13 27650 SAASound-3.2-17.fc26.x86_64.rpm 13-Feb-2017 23 ...