Smith Numbers - PC110706
欢迎访问我的新博客:http://www.milkcu.com/blog/
原文地址:http://www.milkcu.com/blog/archives/uva10042.html
原创:Smith Numbers - PC110706
作者:MilkCu
题目描述
|
|||||
While skimming his phone directory in 1982, mathematician Albert Wilansky noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the
digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:
The sum of all digits of the telephone number is 4 + 9 + 3 + 7 + 7 + 7 + 5 = 42, and the sum of the digits of its prime factors is equally 3
+ 5 + 5 + 6 + 5 + 8 + 3 + 7 = 42. Wilansky named this type of number after his brother-in-law: the Smith numbers.
As this property is true for every prime number, Wilansky excluded them from the definition. Other Smith numbers include 6,036 and 9,985.
Wilansky was not able to find a Smith number which was larger than the telephone number of his brother-in-law. Can you help him out?
Input
The input consists of several test cases, the number of which you are given in the first line of the input. Each test case consists of one line containing a single positive integer smaller than 109.
Output
For every input value n, compute the smallest Smith number
which is larger than n and print it on a single line. You can assume that such a number exists.
Sample Input
1
4937774
Sample Output
4937775
解题思路
如何找出素因子呢?枚举法。
那每个整数的素因子是否唯一呢?
由算术基本定理可得,每个整数表示成素数乘积的方式只有一种。
Smith数肯定是合数,且满足各个数字之和等于所有素因子的每个数字之和。
注意,素因子中可能出现两个相同的数字。
那样就可以按部就班的做,从给定的数开始遍历,找到满足的数就退出循环。
为什么会超时呢?构建一个装有素数的容器。
为什么答案错误呢?
注意:若临时变量tc不为1,则说明它超出了sqrt(1e9)的范围,但它是质数,仍是该整数的质因子。
代码实现
#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
vector<int> v;
int isPrime(int x) {
if(x == 2) {
return 1;
}
int s = ceil(sqrt(x));
for(int i = 2; i <= s; i++) {
if(x % i == 0) {
return 0;
}
}
return 1;
}
void getPrime(void) {
int s = ceil(sqrt(1e9));
for(int i = 2; i <= s; i++) {
if(isPrime(i)) {
v.push_back(i);
}
}
}
int calc(int x) {
int sum = 0;
while(x) {
sum += x % 10;
x /= 10;
}
return sum;
}
int smith(int n) {
int current = n + 1;
while(1) {
//if(find(v.begin(), v.end(), current) != v.end()) {
if(isPrime(current)) {
//zhishu
current++;
continue;
}
int csum = calc(current);
int tc = current;
int tsum = 0;
for(int i = 0; i < v.size(); i++) {
while(tc % v[i] == 0) {
//cout << tc << " " << v[i] << endl;
tc /= v[i];
tsum += calc(v[i]);
}
}
if(tc != 1) {
tsum += calc(tc); //注意!!
}
//cout << current << " " << csum << " " << tsum << endl;
if(tsum == csum) {
return current;
}
//break;
current++;
}
}
void print(int x) {
cout << x << " ";
}
int main(void) {
//cout << isPrime(4937775) << endl;
//cout << calc(4937775) << endl;
int m;
getPrime();
//for_each(v.begin(), v.end(), print);
//cout << endl;
cin >> m;
while(m--) {
int n;
cin >> n;
cout << smith(n) << endl;
}
return 0;
}
(全文完)
本文地址:http://blog.csdn.net/milkcu/article/details/23607205
Smith Numbers - PC110706的更多相关文章
- POJ 1142 Smith Numbers(史密斯数)
Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...
- poj 1142 Smith Numbers
Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...
- Smith Numbers POJ - 1142 (暴力+分治)
题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...
- POJ 1142:Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submiss ...
- poj1142 Smith Numbers
Poj1142 Smith Numbers Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13854 ...
- UVA 10042 Smith Numbers(数论)
Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...
- A - Smith Numbers POJ
While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...
- Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14173 Accepted: 4838 De ...
- hdu 1333 Smith Numbers
刚开始没看清题意,要找的数一定要是素数 ;}
随机推荐
- ASP.NET MVC — 第 4 天
ASP.NET MVC — 第 4 天 目录 第 1 天 第 2 天 第 3 天 第 4 天 第 5 天 第 6 天 第 7 天 0. 前言 欢迎来到第四天的 MVC 系列学习中.如果你直接开始学习今 ...
- SpringData JPA的学习笔记之环境搭建
一.环境搭建 1.加入jar包 spring jar+jpa jar +springData jar >>SpringData jar包 2.配置applicationCont ...
- 由一道面试题想到的:Finally
找工作时,有这样一道题: try{}里面有一条return语句,那么紧跟在这个try后的finally{}里的代码会不会执行,什么时候执行,在return之前还是之后? 我没有怎么思考,根据脑子里仅有 ...
- ashx的学习
原文:ashx的学习 嘿嘿,今天我们休息,本来是想总结一下前两周学习的javascript和jquery,但是感觉好困哦,就没有认真地学习啦,于是做了一个小小的练习,刚开始学习html使用在项目中还是 ...
- 第20章 状态模式(State Pattern)
原文 第20章 状态模式(State Pattern) 状态模式 概述: 当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类. 状态模式主要解决的是当控制一个对象状态的条件表 ...
- 使用PHP顶替JS有趣DOM
較简单,我须要把一个导航页的数据整理好写入数据库.一个比較直观的方法是对html文件进行分析.通用的方法是用php的正則表達式来匹配.可是这样做开发和维护都非常困难,代码可读性非常差. 导航页的数据都 ...
- 基于Jquery的多彩二维码的生成
Demo效果图: 源代码: @{ Layout = null; } <!DOCTYPE html> <html> <head> <meta name=&quo ...
- yii 使用 mongodb 小工具 YiiMongoDbSuite
YiiMongoDbSuite下载链接: http://www.yiiframework.com/extension/yiimongodbsuite/ 如果你的yii和mongodb它已经建立了一个良 ...
- MAC使用小技巧(一)
[ Mac OS X 终端命令开启功能 ] 1.Lion下显示资源库方法一:显示在“终端”中输入下面的命令:chflags nohidden ~/Library/ 隐藏在“终端”中输入下面的命令:ch ...
- GitHub Top 100 简介
主要对当前 GitHub 排名前 100 的项目做一个简单的简介, 方便初学者快速了解到当前 Objective-C 在 GitHub 的情况. GitHub 地址:https://github.co ...