Smith Numbers - PC110706
欢迎访问我的新博客:http://www.milkcu.com/blog/
原文地址:http://www.milkcu.com/blog/archives/uva10042.html
原创:Smith Numbers - PC110706
作者:MilkCu
题目描述
|
![]() |
||||
![]() |
![]() |
![]() |
While skimming his phone directory in 1982, mathematician Albert Wilansky noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the
digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:
The sum of all digits of the telephone number is 4 + 9 + 3 + 7 + 7 + 7 + 5 = 42, and the sum of the digits of its prime factors is equally 3
+ 5 + 5 + 6 + 5 + 8 + 3 + 7 = 42. Wilansky named this type of number after his brother-in-law: the Smith numbers.
As this property is true for every prime number, Wilansky excluded them from the definition. Other Smith numbers include 6,036 and 9,985.
Wilansky was not able to find a Smith number which was larger than the telephone number of his brother-in-law. Can you help him out?
Input
The input consists of several test cases, the number of which you are given in the first line of the input. Each test case consists of one line containing a single positive integer smaller than 109.
Output
For every input value n, compute the smallest Smith number
which is larger than n and print it on a single line. You can assume that such a number exists.
Sample Input
1
4937774
Sample Output
4937775
解题思路
如何找出素因子呢?枚举法。
那每个整数的素因子是否唯一呢?
由算术基本定理可得,每个整数表示成素数乘积的方式只有一种。
Smith数肯定是合数,且满足各个数字之和等于所有素因子的每个数字之和。
注意,素因子中可能出现两个相同的数字。
那样就可以按部就班的做,从给定的数开始遍历,找到满足的数就退出循环。
为什么会超时呢?构建一个装有素数的容器。
为什么答案错误呢?
注意:若临时变量tc不为1,则说明它超出了sqrt(1e9)的范围,但它是质数,仍是该整数的质因子。
代码实现
#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
vector<int> v;
int isPrime(int x) {
if(x == 2) {
return 1;
}
int s = ceil(sqrt(x));
for(int i = 2; i <= s; i++) {
if(x % i == 0) {
return 0;
}
}
return 1;
}
void getPrime(void) {
int s = ceil(sqrt(1e9));
for(int i = 2; i <= s; i++) {
if(isPrime(i)) {
v.push_back(i);
}
}
}
int calc(int x) {
int sum = 0;
while(x) {
sum += x % 10;
x /= 10;
}
return sum;
}
int smith(int n) {
int current = n + 1;
while(1) {
//if(find(v.begin(), v.end(), current) != v.end()) {
if(isPrime(current)) {
//zhishu
current++;
continue;
}
int csum = calc(current);
int tc = current;
int tsum = 0;
for(int i = 0; i < v.size(); i++) {
while(tc % v[i] == 0) {
//cout << tc << " " << v[i] << endl;
tc /= v[i];
tsum += calc(v[i]);
}
}
if(tc != 1) {
tsum += calc(tc); //注意!!
}
//cout << current << " " << csum << " " << tsum << endl;
if(tsum == csum) {
return current;
}
//break;
current++;
}
}
void print(int x) {
cout << x << " ";
}
int main(void) {
//cout << isPrime(4937775) << endl;
//cout << calc(4937775) << endl;
int m;
getPrime();
//for_each(v.begin(), v.end(), print);
//cout << endl;
cin >> m;
while(m--) {
int n;
cin >> n;
cout << smith(n) << endl;
}
return 0;
}
(全文完)
本文地址:http://blog.csdn.net/milkcu/article/details/23607205
Smith Numbers - PC110706的更多相关文章
- POJ 1142 Smith Numbers(史密斯数)
Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...
- poj 1142 Smith Numbers
Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...
- Smith Numbers POJ - 1142 (暴力+分治)
题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...
- POJ 1142:Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submiss ...
- poj1142 Smith Numbers
Poj1142 Smith Numbers Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13854 ...
- UVA 10042 Smith Numbers(数论)
Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...
- A - Smith Numbers POJ
While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...
- Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14173 Accepted: 4838 De ...
- hdu 1333 Smith Numbers
刚开始没看清题意,要找的数一定要是素数 ;}
随机推荐
- 查询(Query)和标识(Identify)
查询(Query)和标识(Identify) 相关文章:RESTful API URI 设计的一些总结. 问题场景:删除一个资源(Resources),URI 该如何设计? 应用示例:删除名称为 iP ...
- 【Android】九宫格实现
第一步,布局文件 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns ...
- C++定义自己的命名空间和头文件
下面的例子演示如何使用一个简单的演示空间和自己的头文件定义.码如下面: compare.h: namespace compare{ double max(const double* data,int ...
- Set <STL>
set是维护集合的容器 #include <cstdio> #include <set> using namespace std; int main() { //声明 set& ...
- jquery动态刷新局部表单
想实现一个效果就是选择某个年份:然后再action中按该年份查找数据库中的数据,返回到页面表单中显示. 1.添加登记年度的changge事件,也是异步请求. $(document).ready(fun ...
- Effective C++之‘宁以pass-by-reference-to-const替换pass-by-value’
Effective C++之'宁以pass-by-reference-to-const替换pass-by-value' 缺省情况下C++以by value 方式(一个继承自C的方式)传递对象至函数.除 ...
- Eclipse部署Web项目(图文讲解)
讲解是在linux下完成的,但对windows系统,操作也是一样的,不要被吓到了 1.下载Eclipse
- Android - 视图Android应用(apk)签名
视图Android应用(apk)签名 本文地址: http://blog.csdn.net/caroline_wendy 在微博.微信开放平台注冊应用时,须要填写应用(apk)的签名,能够使用keyt ...
- foj 2082 树链剖分 第2天
擦,没啥好说的,这个模板至少得打10遍..纪念自己成功的打错了.. #include <iostream> #include <cstdio> #include <cst ...
- Linux中iptables设置详细
无论如何,iptables是一个需要特别谨慎设置的东西,万一服务器不在你身边,而你贸然设置导致无法SSH,那就等着被老板骂吧,呵呵... 一下内容是为了防止这种情况发生而写的,当然很初级,不过一般服务 ...