在机器学习、推荐系统、信息检索、自然语言处理、多媒体视觉等领域,常常会用到准确率(precision)、召回率(recall)、F-measure、F1-score 来评价算法的准确性。

一、准确率和召回率(P&R)

以文本检索为例,先看下图

当中,黑框表示检索域,我们从中检索与目标文本相关性大的项。图中黄色部分(A+B)表示检索域中与目标文本先关性高的项,图中

A+C部分表示你的算法检索出的项。A、B、C的含义图中英文标出。

准确率:

召回率:

一般来说,准确率表示你的算法检索出来的有多少是正确的,召回率表示全部准确的条目中有多少被检索出来。

准确率和召回率的关系

通常,我们希望准确率和召回率均越高越好,但其实这两者在某些情况下是矛盾的。比方我们仅仅搜出了一个结果,此结果是正确的,求得precisin等于1。可是因为仅仅搜出一个结果,recall值反而非常低,接近于0。所以须要综合考量,以下介绍F-measure。

二、F-measure

F-measure又称F-score,其公式为:

当beta=1时,就是F1-score:

F-measure综合了precision和recall,其值越高,通常表示算法性能越好。

准确率和召回率(precision&recall)的更多相关文章

  1. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

  2. Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives.

    Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);在信息检索(如搜索引擎).自然语言处理和检测分类中经常会使用这些参数. Precision:被检测出来的信息 ...

  3. Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives..

    转自:http://blog.csdn.net/t710smgtwoshima/article/details/8215037   Recall(召回率);Precision(准确率);F1-Meat ...

  4. 准确率P 召回率R

    Evaluation metricsa binary classifier accuracy,specificity,sensitivety.(整个分类器的准确性,正确率,错误率)表示分类正确:Tru ...

  5. (七)7.2 应用机器学习方法的技巧,准确率,召回率与 F值

    建立模型 当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的: 1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试: 2)画学习曲线以决定是否更多 ...

  6. 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R

    准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...

  7. 信息检索(IR)的评价指标介绍 - 准确率、召回率、F1、mAP、ROC、AUC

    原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常 ...

  8. CS229 7.2 应用机器学习方法的技巧,准确率,召回率与 F值

    建立模型 当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的: 1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试: 2)画学习曲线以决定是否更多 ...

  9. 准确率,召回率,F值,机器学习分类问题的评价指标

    下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...

随机推荐

  1. 百度经纬度和google经纬度互转

    原文:百度经纬度和google经纬度互转 百度地图的坐标转换,由于百度地图在GCJ02协议的基础上又做了一次处理,变为 BD09协议的坐标,以下是坐标的转化方式,可以方便和其他平台转化 private ...

  2. 飘逸的python - 保持命名空间的整洁

    API的设计是一个艺术活.往往需要其简单.易懂.整洁.不累赘. 很多时候,我们在底层封装一个方法给高层用,而其它的方法只是为了辅助这个方法的. 也就是说我们只需要暴露这个方法就行,不用关心这个方法是怎 ...

  3. PB数据库相关

    ---------------------------------------------------------------- 数据库画板: 一张表定义了主键或者唯一索引,则能够在Results视窗 ...

  4. Objective-C之成魔之路【9-类构造方法和成员变量作用域、以及变量】

    郝萌主倾心贡献,尊重作者的劳动成果.请勿转载. 假设文章对您有所帮助,欢迎给作者捐赠,支持郝萌主,捐赠数额任意,重在心意^_^ 我要捐赠: 点击捐赠 Cocos2d-X源代码下载:点我传送 构造方法 ...

  5. C#操作注册表--DarrenF

    步骤/方法 读取指定名称的注册表的值 private string GetRegistData(string name) { string registData; RegistryKey hkml = ...

  6. 正确Linux新手很实用20命令

     //正确Linux新手很实用20命令 //slwang  2014.4.19 1, ls list directory contents 内容 ls -l     //以详情模式(long li ...

  7. [原创]如何编写多个阻塞队列连接下的多生产者多消费者的Python程序

    平常在写程序时,往往会遇到一个需求:在程序的多个阶段都会出现阻塞的可能,因此,这多个阶段就需要并发执行. Python的多线程有一个特点,就是不允许从外部结束一个运行中的线程,这给我们编写代码时带来了 ...

  8. [WebView五学习]:调试Web Apps

    上一篇我们学习了([WebView学习之四]:迁移到Android4.4版本号的WebView),今天我们来继续学习. (博客地址:http://blog.csdn.net/developer_jia ...

  9. ufldl学习笔记和编程作业:Softmax Regression(softmax回报)

    ufldl学习笔记与编程作业:Softmax Regression(softmax回归) ufldl出了新教程.感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量 ...

  10. 插入排序java

    插入排序简述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的.个数加一的有序数据.   第一个元素是有序队列,从第二个元素开始向有序队列中插入,插入完成后将第三个元素向 ...