Two Rabbits

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)

Total Submission(s): 944    Accepted Submission(s): 496

Problem Description
Long long ago, there lived two rabbits Tom and Jerry in the forest. On a sunny afternoon, they planned to play a game with some stones. There were n stones on the ground and they were arranged as a clockwise ring. That is to say, the first stone was adjacent
to the second stone and the n-th stone, and the second stone is adjacent to the first stone and the third stone, and so on. The weight of the i-th stone is ai.



The rabbits jumped from one stone to another. Tom always jumped clockwise, and Jerry always jumped anticlockwise.



At the beginning, the rabbits both choose a stone and stand on it. Then at each turn, Tom should choose a stone which have not been stepped by itself and then jumped to it, and Jerry should do the same thing as Tom, but the jumping direction is anti-clockwise.



For some unknown reason, at any time , the weight of the two stones on which the two rabbits stood should be equal. Besides, any rabbit couldn't jump over a stone which have been stepped by itself. In other words, if the Tom had stood on the second stone, it
cannot jump from the first stone to the third stone or from the n-the stone to the 4-th stone.



Please note that during the whole process, it was OK for the two rabbits to stand on a same stone at the same time. 



Now they want to find out the maximum turns they can play if they follow the optimal strategy.
 
Input
The input contains at most 20 test cases.

For each test cases, the first line contains a integer n denoting the number of stones.

The next line contains n integers separated by space, and the i-th integer ai denotes the weight of the i-th stone.(1 <= n <= 1000, 1 <= ai <= 1000)

The input ends with n = 0.
 
Output
For each test case, print a integer denoting the maximum turns.
 
Sample Input
1
1
4
1 1 2 1
6
2 1 1 2 1 3
0
 
Sample Output
1
4
5
Hint
For the second case, the path of the Tom is 1, 2, 3, 4, and the path of Jerry is 1, 4, 3, 2.
For the third case, the path of Tom is 1,2,3,4,5 and the path of Jerry is 4,3,2,1,5.
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxn=2200; int n;
int a[maxn];
int dp[maxn][maxn]; int main()
{
while(scanf("%d",&n)!=EOF&&n)
{
for(int i=0;i<n;i++)
{
scanf("%d",a+i);
a[n+i]=a[i];
}
memset(dp,0,sizeof(dp));
n+=n;
for(int i=0;i<n;i++)
{
dp[i][i]=1;
}
for(int len=2;len<n;len++)
{
for(int i=0;i+len-1<n;i++)
{
int j=i+len-1;
dp[i][j]=max(dp[i][j],max(dp[i+1][j],dp[i][j-1]));
if(a[i]==a[j])
{
dp[i][j]=max(dp[i][j],dp[i+1][j-1]+2);
}
}
}
int ans=1;
for(int i=0;i+n/2-1<n;i++)
{
ans=max(ans,dp[i][i+n/2-1]);
}
for(int i=0;i+n/2-2<n;i++)
{
ans=max(ans,dp[i][i+n/2-2]+1);
}
printf("%d\n",ans);
}
return 0;
}

版权声明:来自: 代码代码猿猿AC路 http://blog.csdn.net/ck_boss

HDOJ 4745 Two Rabbits DP的更多相关文章

  1. LPS HDOJ 4745 Two Rabbits

    题目传送门 /* 题意:一只兔子顺时针跳,另一只逆时针跳,跳石头权值相等而且不能越过起点 LPS:这道就是LPS的应用,把环倍增成链,套一下LPS,然而并不能理解dp[i][i+n-2] + 1,看别 ...

  2. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  3. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  4. HDOJ(HDU).2159 FATE (DP 带个数限制的完全背包)

    HDOJ(HDU).2159 FATE (DP 带个数限制的完全背包) 题意分析 与普通的完全背包大同小异,区别就在于多了一个个数限制,那么在普通的完全背包的基础上,增加一维,表示个数.同时for循环 ...

  5. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  6. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  7. 模拟 HDOJ 4552 Running Rabbits

    题目传送门 /* 模拟:看懂题意,主要是碰壁后的转向,笔误2次 */ #include <cstdio> #include <algorithm> #include <c ...

  8. HDU 4745 Two Rabbits(区间DP,最长非连续回文子串)

    Two Rabbits Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total ...

  9. hdu 4745 Two Rabbits 区间DP

    http://acm.hdu.edu.cn/showproblem.php?pid=4745 题意: 有两只兔子Tom Jerry, 他们在一个用石头围城的环形的路上跳, Tom只能顺时针跳,Jerr ...

随机推荐

  1. 读书笔记:《重来REWORK》

    读书笔记:<重来REWORK> <重来Rework--更为简单有效的商业思维>这本书是看了别人的书单而购买的,初 拿到这本书翻看时,感觉有两点与平常的书不同,一是每个小节非常短 ...

  2. 【c语言】模拟库函数strstr

    // 模拟库函数strstr #include <stdio.h> #include <assert.h> const char* my_strstr(const char * ...

  3. 共享库方案解决WAS中JAR包冲突

    实现步骤: 1.        准备共享库JAR包 commons-httpclient-3.1.jar httpclient-4.3.3.jar httpcore-4.3.2.jar httpmim ...

  4. Oracle自增列创建方法

    最近在做Oracle的项目,由于以前没有接触过Oracle的开发,遇到了不少的问题,比如给Oracle表添加自增列,与SQL Server就不同. Oracle没有自增字段这样的功能,但是通过触发器( ...

  5. Thread Dump 和Java应用诊断(转)

    Thread Dump 和Java应用诊断 Thread Dump是非常有用的诊断Java应用问题的工具,每一个Java虚拟机都有及时生成显示所有线程在某一点状态的thread-dump的能力.虽然各 ...

  6. iOS 多线程开发之OperationQueue(二)NSOperation VS GCD

    原创Blog.转载请注明出处 blog.csdn.net/hello_hwc 欢迎关注我的iOS SDK具体解释专栏 http://blog.csdn.net/column/details/huang ...

  7. Java开发环境的基本设置

    作为Java的刚開始学习的人,不知道其它的刚開始学习的人有没有和我一样的感受:用Java开发须要配置这么复杂 的环境.太难了.第一次配置时,一团混乱.Oracle监听服务打不开了,PLSql连接不上O ...

  8. wamp的安装使用(转)

    这次需要记录一下我搭建web服务器的过程. 第一步,确定自己要使用的平台:这次我用的是windows2008 server版本 第二步,计划是想要纯手工的安装apache.php等.但是我们可以下载一 ...

  9. Java EE (8) -- Java EE Patterns

    Java EE 模式目录由以下三个层组成: –     整合层(4) –     业务层(9) –     表示层(8) 涉及 Java EE 平台代码与其它类型应用程序或遗留系统的集成: 服务激活器 ...

  10. FlexPaper二次开发问题及搜索高亮显示

    原文:FlexPaper二次开发问题及搜索高亮显示 最近有个需求,做一个IT知识库,类似于文库,说到文库肯定会用到在线浏览文档了,所有在网上翻阅了一下类似豆丁的在线浏览器插件的资料,将其进行了二次开发 ...