1、什么是B树(B-树)?

B树是一种m阶树,m>=2

性质:

1)树中每个结点至多m个孩子;

2)对于根结点,子树个树取值范围为[2,m],关键字个数范围[1,m-1];

3)对于非根非叶结点,子树个数取值范围为[ceil(m/2),m],关键字个数范围为[ceil(m/2)-1,m-1];

4)所有叶子结点都出现在同一层。

5)每个非叶子结点中包含n个关键字信息:(n, P0, K1, P1, K2, P2, ... , Kn, Pn)。

n为关键字的个数,且有 [ceil(m/2)-1] <= n <= m-1

Ki为关键字,且按升序排序

Pi为指向子树的接点,且    K(i-1)  <=  P(i-1) 指向子树的所有结点关键字    <=Ki

三阶B树

2)3)的应用

如果B树结点的最小度数为固定整数t>=2,有

a) 非根结点至少 t-1个关键字,非根非叶结点至少t个子女

b)每个结点至多2t-1个关键字,每个非根非叶结点至多2t个子女

c)综上所述根结点关键字个数范围为:[1, 2*t-1],非根结点关键字个数范围为:[t-1,2*t-1]

2、B树复杂度与高度

B树的高度:

根为1个结点,第二层至少为2个结点,第三层至少为2t个结点,第四层至少2t*t个结点

将所有最小结点相加,推导过程:n>= 1+2+2t+2t^2+ ... +2t^(h-1)=3+2t (t^h-1)/(t-1)>=2t^(h-1)+1

最后推出的结果为

h<=log((n-1)/2)

3、操作

这里只给出插入删除操作,查找操作相对简单的多 这里不做解释

 1)B-树的插入操作(重点判断是否满足n<=m-1)

a.利用前述的B-树的查找算法查找关键字的插入位置。若找到,则说明该关键字已经存在,直接返回。否则查找操作必失败于某个最低层的非终端结点上。

b.判断该结点是否还有空位置。即判断该结点的关键字总数是否满足n<=m-1。若满足,则说明该结点还有空位置,直接把关键字k插入到该结点的合适位置上。若不满足,说明该结点己没有空位置,需要把结点分裂成两个。

分裂的方法是:生成一新结点。把原结点上的关键字和k按升序排序后,从中间位置把关键字(不包括中间位置的关键字)分成两部分。左部分所含关键字放在旧结点中,右部分所含关键字放在新结点中,中间位置的关键字连同新结点的存储位置插入到父结点中。如果父结点的关键字个数也超过(m-1),则要再分裂,再往上插。直至这个过程传到根结点为止。

2)B树的删除

a)利用B树查找算法找出关键字所在的结点,然后根据结点所在的位置判断是否为叶子结点

b)若为非叶结点,且被删关键字为该结点中第i个关键字key[i],则可从指针son[i]所指向的子树中找出最小关键字Y,代替key[i]的位置,然后在叶结点中删去Y,把非叶结点的删除化为叶结点的删除。

叶结点删除一个关键字的方法:

三种不同情况:

(1)如果被删关键字所在结点的原关键字个数n>ceil(m/2),则说明删去该关键字后该结点仍满足B树的定义,这种情况下直接删除即可;

(2)如果被删除关键字所在结点的关键字个数n等于ceil(m/2)-1,说明删去该关键字后该结点将不满足B树的定义,需要调整:

如果其左右兄弟结点中有“多余”的关键字,即与该结点相邻的左(右)兄弟结点中的关键字数目大于ceil(m/2)-1,则可将左(右)兄弟结点中最大(小)的结点上移至双亲结点,而将双亲结点中大(小)于该上移关键字的关键字下移至被删关键字所在结点中。

(3)如果左右兄弟结点中没有多余的关键字,即左右兄弟结点中关键字的数目均等于ceil(m/2)-1。

需要调整:

在删除关键字后,该结点中剩余的关键字加指针,加上双亲结点中的关键字(该关键字为结点与兄弟结点的分割者),合并到兄弟结点中去。

B树(B-树)的更多相关文章

  1. BZOJ 3110: [Zjoi2013]K大数查询 [树套树]

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6050  Solved: 2007[Submit][Sta ...

  2. BZOJ4170 极光(CDQ分治 或 树套树)

    传送门 BZOJ上的题目没有题面-- [样例输入] 3 5 2 4 3 Query 2 2 Modify 1 3 Query 2 2 Modify 1 2 Query 1 1 [样例输出] 2 3 3 ...

  3. Atitit 常见的树形结构 红黑树  二叉树   B树 B+树  Trie树 attilax理解与总结

    Atitit 常见的树形结构 红黑树  二叉树   B树 B+树  Trie树 attilax理解与总结 1.1. 树形结构-- 一对多的关系1 1.2. 树的相关术语: 1 1.3. 常见的树形结构 ...

  4. bzoj3262: 陌上花开(树套树)

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  5. bzoj3295: [Cqoi2011]动态逆序对(树套树)

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  6. BZOJ 3110 k大数查询 & 树套树

    题意: 有n个位置,每个位置可以看做一个集合,现在要求你实现一个数据结构支持以下功能: 1:在a-b的集合中插入一个数 2:询问a-b集合中所有元素的第k大. SOL: 调得火大! 李建说数据结构题能 ...

  7. HDU 5877 dfs+ 线段树(或+树状树组)

    1.HDU 5877  Weak Pair 2.总结:有多种做法,这里写了dfs+线段树(或+树状树组),还可用主席树或平衡树,但还不会这两个 3.思路:利用dfs遍历子节点,同时对于每个子节点au, ...

  8. BZOJ 3110 树套树 && 永久化标记

    感觉树套树是个非常高深的数据结构.从来没写过 #include <iostream> #include <cstdio> #include <algorithm> ...

  9. 字符串 --- KMP Eentend-Kmp 自动机 trie图 trie树 后缀树 后缀数组

    涉及到字符串的问题,无外乎这样一些算法和数据结构:自动机 KMP算法 Extend-KMP 后缀树 后缀数组 trie树 trie图及其应用.当然这些都是比较高级的数据结构和算法,而这里面最常用和最熟 ...

  10. 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))

    函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...

随机推荐

  1. Python反射函数

    python里面跟getattr相关的有hasattr,setattr,delattr  ,那么我们通过下面的例子,来详细的说说他们的用法. class Xiaorui: def __init__(s ...

  2. MiniMetro Items

    圈代表居民区三角写字楼等工作区方块是商业区钻石是金融中心五角星是政府 十字是医院 扁扁的旅游景区

  3. eclipse里xml提示包名的插件——Rinzo

    1.Rinzo简介 在官方网站上的介绍到,Rinzo是一款Eclipse的XML编辑器,可以使在处理XML文件时变得简洁高效.与一般的XML文件相比,具有以下特点: l 自动显示DTD或Schema里 ...

  4. c#:readonly与const的区别

    readonly与const的区别: 1.初始化:const  字段只能在该字段的声明中初始化. readonly  字段可以在声明或构造函数中初始化. 2.值: const 字段是编译时常量(con ...

  5. Ubuntu16.04删除客人会话

    1.按下 Ctrl+Alt+T - 打开终端 2.输入以下指令: sudo gedit /etc/lightdm/lightdm.conf 3.源代码之后添加如下代码,然后保存.关闭,重启电脑即可. ...

  6. C# 动态对象(dynamic)的用法

    说到正确用法,那么首先应该指出一个错误用法: 常有人会拿var这个关键字来和dynamic做比较.实际上,var和dynamic完全是两个概念,根本不应该放在一起做比较.var实际上是编译期抛给我们的 ...

  7. C#如何实现url短地址?C#短网址压缩算法与短网址原理入门

    c# url短地址压缩算法与短网址原理的例子,详细介绍了短网址的映射算法,将长网址md5生成32位签名串,分为4段,每段8个字节,然后生成短网址,具体见文本实例. 短网址映射算法: 将长网址md5生成 ...

  8. react重学

    知识点一:react解析中 return {__html:rawMarkup}; 这里的html前边用的是双下划线(谢谢学妹的指点)

  9. Unity发布安卓无法读取StreamingAssets文件下数据库的问题

    在移动端StreamingAssets下的文件是只读的,但大家可能跟我一样遇到了发布安卓以后放在StreamingAssets下的数据库文件一样读取不了, 但其实这个文件夹其实是可以读取到的,所以我们 ...

  10. IBM Minus One

    IBM Minus One Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...