简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行

程序源码

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Score {
public static class Map extends
Mapper<LongWritable, Text, Text, IntWritable> {
// 实现map函数
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// 将输入的纯文本文件的数据转化成String
String line = value.toString();
// 将输入的数据首先按行进行分割
StringTokenizer tokenizerArticle = new StringTokenizer(line, "\n");
// 分别对每一行进行处理
while (tokenizerArticle.hasMoreElements()) {
// 每行按空格划分
StringTokenizer tokenizerLine = new StringTokenizer(tokenizerArticle.nextToken());
String strName = tokenizerLine.nextToken();// 学生姓名部分
String strScore = tokenizerLine.nextToken();// 成绩部分
Text name = new Text(strName);
int scoreInt = Integer.parseInt(strScore);
// 输出姓名和成绩
context.write(name, new IntWritable(scoreInt));
}
}
} public static class Reduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
// 实现reduce函数
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
int count = 0;
Iterator<IntWritable> iterator = values.iterator();
while (iterator.hasNext()) {
sum += iterator.next().get();// 计算总分
count++;// 统计总的科目数
}
int average = (int) sum / count;// 计算平均成绩
context.write(key, new IntWritable(average));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
// "localhost:9000" 需要根据实际情况设置一下
conf.set("mapred.job.tracker", "localhost:9000");
// 一个hdfs文件系统中的 输入目录 及 输出目录
String[] ioArgs = new String[] { "input/score", "output" };
String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: Score Average <in> <out>");
System.exit(2);
} Job job = new Job(conf, "Score Average");
job.setJarByClass(Score.class);
// 设置Map、Combine和Reduce处理类
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
// 设置输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 将输入的数据集分割成小数据块splites,提供一个RecordReder的实现
job.setInputFormatClass(TextInputFormat.class);
// 提供一个RecordWriter的实现,负责数据输出
job.setOutputFormatClass(TextOutputFormat.class);
// 设置输入和输出目录
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

编译

命令

javac Score.java

依赖错误

如果出现如下错误:

mint@lenovo ~/Desktop/hadoop $ javac Score.java
Score.java:4: error: package org.apache.hadoop.conf does not exist
import org.apache.hadoop.conf.Configuration;
^
Score.java:5: error: package org.apache.hadoop.fs does not exist
import org.apache.hadoop.fs.Path;
^
Score.java:6: error: package org.apache.hadoop.io does not exist
import org.apache.hadoop.io.IntWritable;
^
Score.java:7: error: package org.apache.hadoop.io does not exist
import org.apache.hadoop.io.LongWritable;
^
Score.java:8: error: package org.apache.hadoop.io does not exist
import org.apache.hadoop.io.Text;

尝试修改环境变量CLASSPATH

sudo vim /etc/profile
# 添加如下内容
export HADOOP_HOME=/usr/local/hadoop # 如果没设置的话, 路径是hadoop安装目录
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH # 如果没设置的话
export CLASSPATH=$($HADOOP_HOME/bin/hadoop classpath):$CLASSPATH

source /etc/profile

然后重复上述编译命令.

打包

编译之后会生成三个class文件:

mint@lenovo ~/Desktop/hadoop $ ls | grep class
Score.class
Score$Map.class
Score$Reduce.class

使用tar程序打包class文件.

tar -cvf Score.jar ./Score*.class

会生成Score.jar文件.

提交运行

样例输入

mint@lenovo ~/Desktop/hadoop $ ls | grep txt
chinese.txt
english.txt
math.txt
mint@lenovo ~/Desktop/hadoop $ cat chinese.txt
Zhao 98
Qian 9
Sun 67
Li 23
mint@lenovo ~/Desktop/hadoop $ cat english.txt
Zhao 93
Qian 42
Sun 87
Li 54
mint@lenovo ~/Desktop/hadoop $ cat math.txt
Zhao 38
Qian 45
Sun 23
Li 43

上传到HDFS

hdfs dfs -put ./*/txt input/score

mint@lenovo ~/Desktop/hadoop $ hdfs dfs -ls input/score
Found 3 items
-rw-r--r-- 1 mint supergroup 28 2017-01-11 23:25 input/score/chinese.txt
-rw-r--r-- 1 mint supergroup 29 2017-01-11 23:25 input/score/english.txt
-rw-r--r-- 1 mint supergroup 29 2017-01-11 23:25 input/score/math.txt

运行

mint@lenovo ~/Desktop/hadoop $ hadoop jar Score.jar Score input/score output
17/01/11 23:26:26 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
17/01/11 23:26:27 INFO input.FileInputFormat: Total input paths to process : 3
17/01/11 23:26:27 INFO mapreduce.JobSubmitter: number of splits:3
17/01/11 23:26:27 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
17/01/11 23:26:27 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1484147224423_0006
17/01/11 23:26:27 INFO impl.YarnClientImpl: Submitted application application_1484147224423_0006
17/01/11 23:26:27 INFO mapreduce.Job: The url to track the job: http://lenovo:8088/proxy/application_1484147224423_0006/
17/01/11 23:26:27 INFO mapreduce.Job: Running job: job_1484147224423_0006
17/01/11 23:26:33 INFO mapreduce.Job: Job job_1484147224423_0006 running in uber mode : false
17/01/11 23:26:33 INFO mapreduce.Job: map 0% reduce 0%
17/01/11 23:26:40 INFO mapreduce.Job: map 67% reduce 0%
17/01/11 23:26:41 INFO mapreduce.Job: map 100% reduce 0%
17/01/11 23:26:46 INFO mapreduce.Job: map 100% reduce 100%
17/01/11 23:26:46 INFO mapreduce.Job: Job job_1484147224423_0006 completed successfully
17/01/11 23:26:47 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=129
FILE: Number of bytes written=471147
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=443
HDFS: Number of bytes written=29
HDFS: Number of read operations=12
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=3
Launched reduce tasks=1
Data-local map tasks=3
Total time spent by all maps in occupied slots (ms)=15538
Total time spent by all reduces in occupied slots (ms)=2551
Total time spent by all map tasks (ms)=15538
Total time spent by all reduce tasks (ms)=2551
Total vcore-milliseconds taken by all map tasks=15538
Total vcore-milliseconds taken by all reduce tasks=2551
Total megabyte-milliseconds taken by all map tasks=15910912
Total megabyte-milliseconds taken by all reduce tasks=2612224
Map-Reduce Framework
Map input records=12
Map output records=12
Map output bytes=99
Map output materialized bytes=141
Input split bytes=357
Combine input records=12
Combine output records=12
Reduce input groups=4
Reduce shuffle bytes=141
Reduce input records=12
Reduce output records=4
Spilled Records=24
Shuffled Maps =3
Failed Shuffles=0
Merged Map outputs=3
GC time elapsed (ms)=462
CPU time spent (ms)=2940
Physical memory (bytes) snapshot=992215040
Virtual memory (bytes) snapshot=7659905024
Total committed heap usage (bytes)=732430336
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=86
File Output Format Counters
Bytes Written=29

输出

mint@lenovo ~/Desktop/hadoop $ hdfs dfs -ls output
Found 2 items
-rw-r--r-- 1 mint supergroup 0 2017-01-11 23:26 output/_SUCCESS
-rw-r--r-- 1 mint supergroup 29 2017-01-11 23:26 output/part-r-00000
mint@lenovo ~/Desktop/hadoop $ hdfs dfs -cat output/part-r-00000
Li 40
Qian 32
Sun 59
Zhao 76

简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行的更多相关文章

  1. 使用Python实现Hadoop MapReduce程序

    转自:使用Python实现Hadoop MapReduce程序 英文原文:Writing an Hadoop MapReduce Program in Python 根据上面两篇文章,下面是我在自己的 ...

  2. mapreduce实现学生平均成绩

    思路: 首先从文本读入一行数据,按空格对字符串进行切割,切割后包含学生姓名和某一科的成绩,map输出key->学生姓名    value->某一个成绩 然后在reduce里面对成绩进行遍历 ...

  3. 【MFC学习笔记-作业9-基于单击响应的计算平均成绩】【】

    要求..单击出现 一个输入成绩的框,点确定后,计算平均成绩 意义很大~ 完成对话框   再写个鼠标点击的响应部分 鼠标点击的响应部分为难点.... void CWj1401_0302140107_9V ...

  4. [python]使用python实现Hadoop MapReduce程序:计算一组数据的均值和方差

    这是参照<机器学习实战>中第15章“大数据与MapReduce”的内容,因为作者写作时hadoop版本和现在的版本相差很大,所以在Hadoop上运行python写的MapReduce程序时 ...

  5. HDFS基本命令与Hadoop MapReduce程序的执行

    一.HDFS基本命令 1.创建目录:-mkdir [jun@master ~]$ hadoop fs -mkdir /test [jun@master ~]$ hadoop fs -mkdir /te ...

  6. 用Python语言写Hadoop MapReduce程序Writing an Hadoop MapReduce Program in Python

    In this tutorial I will describe how to write a simple MapReduce program for Hadoop in the Python pr ...

  7. MapReduce编程:平均成绩

    问题描述 现在有三个文件分别代表学生的各科成绩,编程求各位同学的平均成绩.                     编程思想 map函数将姓名作为key,成绩作为value输出,reduce根据key ...

  8. Python实现Hadoop MapReduce程序

    1.概述 Hadoop Streaming提供了一个便于进行MapReduce编程的工具包,使用它可以基于一些可执行命令.脚本语言或其他编程语言来实现Mapper和 Reducer,从而充分利用Had ...

  9. Intellij idea开发Hadoop MapReduce程序

    1.首先下载一个Hadoop包,仅Hadoop即可. http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop-2.6.0/hadoop-2.6.0 ...

随机推荐

  1. ZBUS = MQ + RPC

    http://git.oschina.net/rushmore/zbus http://my.oschina.net/sbz/blog  Readme.md 18.02 KB ZBUS = MQ + ...

  2. Codeforces#364Div2

    A题: 题意:给定一些数,然后每两个组成一对,要求每对的和的大小相同,输出这样的组合 分析:直接模拟就行 #include <iostream> #include <cstdio&g ...

  3. mac和xcode快捷键

    mac中: 1.怎么建立快捷方式 首先 按住option+command  ,在用鼠标拖动目标文件到指定地点,先松开鼠标,然后在松开键盘

  4. Nginx 负载均衡 后端 监控检测 nginx_upstream_check_module 模块的使用

    在使用nginx 的负载均衡 中,我们通常会使用到 Nginx 自带的 ngx_http_proxy_module 健康检测模块. ngx_http_proxy_module 自带的 健康检测模块参数 ...

  5. [Unity Shader] 3D模型的简单属性

    每个3D对象是由顶点和面的.这被称为一个网格(Mesh).每个顶点有一个归一化的“normal”的向量,表示连接到该顶点的面的方向.这对于计算光照来说很重要.当计算漫反射和镜面反射的照明,normal ...

  6. Keil MDK下如何设置非零初始化变量(转)

    源:Keil MDK下如何设置非零初始化变量 一些工控产品,当系统复位后(非上电复位),可能要求保持住复位前RAM中的数据,用来快速恢复现场,或者不至于因瞬间复位而重启现场设备.而keil mdk在默 ...

  7. InnoDB的行溢出数据,Char的行结构存储

    行溢出数据 InnoDB存储引擎可以将一条记录中的某些数据存储在真正的数据页面之外,即作为行溢出数据.一般认为BLOB.LOB这类的大对象列类型的存储会把数据存放在数据页面之外.但是,这个理解有点偏差 ...

  8. js Date 日期格式化(转)

    var myDate = new Date();myDate.getYear();        //获取当前年份(2位)myDate.getFullYear();    //获取完整的年份(4位,1 ...

  9. LPC1788的外部中断和GPIO中断

    首先是gpio中断,这一点和1768不同,1768使用的中断时和eint3共用中断通道,到了1788,专门为gpio开辟了中断 #ifndef __JOYPAD_H_ #define __JOYPAD ...

  10. Incompatible pointer types assigning to 'id<>' from 'Class'错误

    实例变量在类方法中被使用 原因:静态方法访问了非静态变量属性(.h中声明的那些属性),就是类方法访问了成员变量