GreenPlum学习之(Share-nothing)架构
当今世界是一个信息化的世界,我们的生活中无论是生活、工作、学习都离不开信息系统的支撑。而信息系统的背后用于保存和处理最终结果的地方就是数据库。因此数据库系统就变得尤为重要,这意味着如果数据库如果面临问题,则意味着整个应用系统也会面临挑战,从而带来严重的损失和后果。
如今“大数据”这个词已经变得非常流行,虽然这个概念如何落地不得而知。但可以确定的是,随着物联网、移动应用的兴起,数据量相比过去会有几何级的提升,因此数据库所需要解决的问题不再仅仅是记录程序正确的处理结果,还需要解决如下挑战:
当数据库性能遇到问题时,是否能够横向扩展,通过添加服务器的方式达到更高的吞吐量,从而充分利用现有的硬件实现更好的投资回报率。
是否拥有实时同步的副本,当数据库面临灾难时,可以短时间内通过故障转移的方式保证数据库的可用性。此外,当数据丢失或损坏时,能否通过所谓的实时副本(热备)实现数据的零损失。
数据库的横向扩展是否对应用程序透明,如果数据库的横向扩展需要应用程序端进行大量修改,则所带来的后果不仅仅是高昂的开发成本,同时也会带来很多潜在和非潜在的风险。
面对上述挑战一个显而易见的办法是将多个服务器组成一组集群,这样一来就可以充分利用每一台服务器的资源并将客户端负载分发到不同服务器上,随着应用程序负载的增加,只需要将新的服务器添加到集群即可。
本篇文章将对集群的概念、形式以及目前主流的数据库集群技术进行探讨。
数据库集群的形式
数据库的集群和扩展不像应用程序扩展那样容易,因为从数据库端来说,一旦涉及到了集群,往往会涉及到数据库层面的同步,因此从是否存在数据冗余这个角度来讲,我们可以从大面上把数据库集群分为以下两种形式:
Share-Disk架构
Share-Disk架构是通过多个服务器节点共享一个存储来实现数据库集群,两台机器最简单的Share-Disk架构如图1所示。
▲图1.简单的Share-Disk架构
在此基础之上,Share-Disk架构又分为单活和双活,双活即为集群中的每一个节点都可以同时对外提供服务,而单活为集群中只有一个节点可对外提供服务,集群中的其他服务器作为冗余在“活”的节点出现故障时接替该服务器成为对外提供服务的节点。该类架构最典型的产品就是SQL Server Failover Cluster(SQL Server故障转移集群)、NEC的EXPRESSCLUSTER、ROSE的ROSE HA。这种方式的弊端也是显而易见的,如下:
硬件资源的严重浪费,同一时间集群中只有一台服务器活着,其他服务器只能作为冗余服务器。
集群无法提升性能,因为只有一台服务器可用
存储方面存在单点故障,除非在存储层级保证高可用,通常需要昂贵的SAN存储。
因此该类方案仅仅可以做到服务器层面的高可用,无法带来性能的提升,也无法解决存储单点故障的问题。因此如果不搭配其他高可用或负载均衡的技术,存在的意义并不是很大。
另一类技术是Share-Disk中的双活的技术,与单活技术不同的是,双活的技术虽然也是共享磁盘,但集群中的所有节点都可以对外提供服务,典型的产品就是Oracle的RAC。RAC的技术性非常的高,因此需要水平比较高的人来运维系统。RAC设计的初衷并不是为了性能,而是为了高可用和可扩展性,如果应用程序不是针对RAC架构设计和开发的,则将应用程序迁移到RAC上由于block contention (block busy waits)可能会导致性能的急剧下降,并且节点越多性能下降越明显。
Share-Nothing架构
Share-Nothing架构又分为两种,首先是分布式架构。将数据库中的数据按照某一标准分布到多台机器中,查询或插入时按照条件查询或插入对应的分区。
另一种是每一个节点完全独立,节点之间通过网络连接,通常是通过光钎等专用网络。如图2所示。
▲图2.Share-Nothing冗余架构
在Share-Nothing架构中,每一个节点都拥有自己的内存和存储,都保留数据的完整副本。通常来说,又可以分为两种,可以负载均衡和不可以负载均衡。
首先谈谈不可负载均衡的集群,在不可负载均衡的技术中,集群中的节点会被分为主节点和辅助节点,主节点向外提供服务,辅助节点作为热备(二阶段事务提交)或暖备(不需要保证事务同步),同时有可能使得辅助节点提供只读的服务。使用这个架构的技术包括:SQL Server AlwaysOn,SQL Server Mirror,Oracle Data Guard这种架构带来的好处包括:
辅助节点数据和主节点保持同步或准同步,当搭配第三方仲裁后,可以实现自动的故障转移,从而实现了高可用
辅助节点由于和主节点完全独立且数据同步或准同步,因此主节点出现数据损坏后,可以从辅助节点恢复数据(自动或手动)
由于Share-Nothing架构使用了本地存储(或SAN),相较于Share-Disk架构在慢速网络时有非常大的性能优势
当然,弊端也显而易见,因为辅助节点无法对外提供服务或只能提供只读服务,因此该类集群的弊端包括:
扩展能力非常有限
对性能没有提升,因为涉及到各节点的数据同步,甚至带来性能的下降
辅助节点如果可读,虽然提升性能,但需要修改前端应用程序,对应用程序不透明
另一类Share-Nothing架构中,是允许负载均衡的。所谓负载均衡就是就是将对数据库的负载分布到集群中的多个节点上,在集群中的每一个节点都可以对外提供服务,从而达到更高的吞吐量,更好的资源利用率和更低的响应时间。前端通过代理进行调度。使用该类架构的技术包括:MySQL上的Amoeba(架构如图3,摘自MySQL大师陈畅亮的博客:http://www.cnblogs.com/gaizai/archive/2012/06/12/2546755.html),MySQL上的HA Proxy(如图4所示),格瑞趋势(www.grqsh.com)在SQL Server上的Moebius集群(如图5所示)。
▲图3.Amoeba
▲图4.HA Proxy
▲图5.Moebius集群
可负载均衡的Share-Nothing架构的好处是每台服务器都能提供服务,能充分利用现有资源,达到更高的吞吐量。其中Amoeba中可能会涉及到数据分片,数据分片的好处是对于海量数据的处理更加高效,但同时也引入了其他问题,比如说需要应用程序端对应数据分片进行调整、跨分片节点查询的处理问题、每一个数据分片节点是否能够承受各自业务负载的高峰问题等。该类架构需要实施的人员水平比较高,且需要应用层面做调整,因此更适合于互联网企业。
另一类不涉及到数据分片的架构,比如一类可以使用组合方案,比如说Oracle RAC+F5。另一类是使用单个厂商提供的方案,比如说SQL Server上的Moebius。这类方案集群中的每个节点都会对外提供服务,因此有如下好处:
由于每一个节点都可以对外提供服务,因此可以提升性能
扩展性得到提升,可以通过向集群添加节点直接进行Scale-Out扩充
由于前端应用通过代理连接到集群,而集群中的每一个节点都保持完整的数据集,因此不存在分片不到位反而造成性能下降的问题,因此对应用程序端完全透明
但相比较于MySQL的数据分片,该类方案的弊端也显而易见,因为每一个节点都需要完整的数据集,因此需要占用更多的存储空间。
小结
本文从一个比较高的层面谈到了数据库集群技术。从数据库应用层面的Share-Disk集群直到集群的最高形式-能够提供负载均衡的集群,并列举了一些主流的商用产品。集群的存在意义是为了保证高可用、数据安全、扩展性以及负载均衡。如果现在的集群产品不能包含这几个特性,而业务场景也需要,也可以将和一些现有的技术结合来实现,但毕竟不是每一个人都是数据库专家,即使给你一堆工具和材料你也做不出来iPhone,因此在系统设计之初就对数据库方面的方案有所考虑会免去很多麻烦。
GreenPlum学习之(Share-nothing)架构的更多相关文章
- Jetpack Compose学习(7)——MD样式架构组件Scaffold及导航底部菜单
Jetpack Compose学习(7)--MD样式架构组件Scaffold及导航底部菜单 | Stars-One的杂货小窝 Compose给我们提供了一个Material Design样式的首页组件 ...
- ODI学习笔记2--ODI产品架构
ODI学习笔记2--ODI产品架构 ODI产品架构: ODI提供了以下几种管理工具:Designer 用于定义数据转换逻辑,这是最常用的开发工具,大部分的开发任务,包括data store的定义,in ...
- (1)写给Web初学者的教案-----学习Web的知识架构
1:学习Web的知识架构 前文中我们简单的介绍了一些关于Web的基本知识,这里任老师再次强调一下凡是用浏览器打开的网站我们就称之为Web应用程序(B/S结构).除此之外其它需要下载安装的软件或是手机 ...
- 如何从 ToB 企业级 IM 产品中学习技术选型和架构
如何从 ToB 企业级 IM 产品中学习技术选型和架构 多端,全端 React React Native Flutter Electron Lark https://www.larksuite.com ...
- 从零开始学习Android(二)从架构开始说起
我们刚开始学新东西的时候,往往希望能从一个实例进行入手学习.接下来的系列连载文章也主要是围绕这个实例进行.这个实例原形是从电子书<Android应用开发详解>得到的,我们在这里对其进行详细 ...
- Bootstrap学习笔记之整体架构
之前有粗略地看过一下Bootstrap的内容,不过那只是走马观花式地看下是怎么用的,以及里面有什么控件,所以就没想着记笔记.现在由于要给部门做分享,所以不得不深入地去学习下,不然仅是简单地说下怎么用, ...
- greenplum学习
公司TM蛋疼,动不动让你学习新东西,就是不让你闲下来,本着胳膊拧不过大腿定律,忍了,这是背景. 好吧哥端起一本厚厚的<GreenPlum企业应用实战>,打开百度开始GP的学习之路: GP只 ...
- Hive深入学习--应用场景及架构原理
Hive背景介绍 Hive最初是Facebook为了满足对海量社交网络数据的管理和机器学习的需求而产生和发展的.互联网现在进入了大数据时代,大数据是现在互联网的趋势,而hadoop就是大数据时代里的核 ...
- GreenPlum学习笔记:基础知识
一.介绍 GreenPlum分布式数据仓库,大规模并行计算技术. 无共享/MPP核心架构 Greenplum数据库软件将数据平均分布到系统的所有节点服务器上,所以节点存储每张表或表分区的部分行,所有数 ...
随机推荐
- CSS倒影
前面的话 CSS倒影目前只有chrome和safari浏览器支持,且需要添加-webkit-前缀.本文将详细介绍CSS倒影box-reflect 语法 -webkit-box-reflect 初始 ...
- Windows server 2008 r2上安装MySQL
用MSI安装包安装 根据自己的操作系统下载对应的32位或64位安装包.按如下步骤操作: MySQL数据库官网的下载地址http://dev.mysql.com/downloads/mysql,第一步: ...
- 微信小程序-scroll-view隐藏滚动条
在书写网页的时候,往往会为了页面的美观,而选择去掉滚动区域默认的滚动条,而在这里,就是为小程序去掉滚动条的其中的一种方法: scroll-view.wxml: scroll-view.wxss scr ...
- eclipse 一些快捷键
快捷键 alt + 上下方向键 向后缩进 shift + tab 整体向左移动 tab 就是向右移动 ctrl + Q 就是构建有参的构造方法 ctrl + E 是get set 方法,要把quick ...
- UGUI和现实世界的比例关系
之前测试过默认大小的 Cube 在现实中的 比例关系,得出基本单位为 m 的结论,至于 UGUI和现实世界的比例关系 看下图就知道了: Cube Collider 的大小: Button 的大小: 其 ...
- 自定义报表开发(HTML/XML)
定义报表执行的包或存储过程: --创建包头 CREATE OR REPLACE PACKAGE XXPLM_AARONTEST001 IS PROCEDURE MAIN(errbuf OUT VARC ...
- openSuse使用技巧
1.opensuse的gnome默认使用nautilus作为文件浏览工具,若要设置文件的默认排序和视图,参考网页 https://thelinuxexperiment.com/change-the-d ...
- HDU 5886 Tower Defence
树的直径. 比赛的时候想着先树$dp$处理子树上的最长链和次长链,然后再从上到下进行一次$dfs$统计答案,和$CCPC$网络赛那个树$dp$一样,肯定是可以写的,但会很烦.......后来写崩了. ...
- hdu1035
#include<stdio.h>#include<string.h>int step,n,m;int a[1010][1010];char map[11][11];void ...
- Python Data Visualization Cookbook 2.9.2
import numpy as np import matplotlib.pyplot as plt def is_outlier(points, threshold=3.5): if len(poi ...