POJ 1166 The Clocks
高斯消元法第四个冠军,这个称号是非常令人兴奋~~
题目大意:
给出9个钟表的状态。给出九种操作,问最少要操作几次能把全部的钟表调回12点。
解题思路:
对于9个钟表分别列方程,然后高斯消元就可以。因为这次左边的方程系数不是0就是1,所以不用找最大值~
以下是代码:
#include <set>
#include <map>
#include <queue>
#include <math.h>
#include <vector>
#include <string>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm> #define eps 1e-6
#define pi acos(-1.0)
#define inf 107374182
#define inf64 1152921504606846976
#define lc l,m,tr<<1
#define rc m + 1,r,tr<<1|1
#define iabs(x) ((x) > 0 ? (x) : -(x))
#define clear1(A, X, SIZE) memset(A, X, sizeof(A[0]) * (SIZE))
#define clearall(A, X) memset(A, X, sizeof(A))
#define memcopy1(A , X, SIZE) memcpy(A , X ,sizeof(X[0])*(SIZE))
#define memcopyall(A, X) memcpy(A , X ,sizeof(X))
#define max( x, y ) ( ((x) > (y)) ? (x) : (y) )
#define min( x, y ) ( ((x) < (y)) ? (x) : (y) ) using namespace std; struct node
{
long long num[15];
node()
{
clearall(num,0);
}
void clen()
{
clearall(num,0);
}
}; struct node matrix[15];
int n,m,len;
bool free_x[15]; long long X[15],p; void Debug(void)
{
puts("");
int i, j;
for (i = 0; i < m; i++)
{
for (j = 0; j < n + 1; j++)
{
cout << matrix[i].num[j] << " ";
}
cout << endl;
}
cout << endl;
} int Guass()
{
int i,j,k,col;
clearall(X,0);
clearall(free_x,1);//把解集清空,全部变量都标为自由变量 for (k = 0,col = 0; k < m && col < n; ++k, ++col) //枚举行列
{
//printf("%d\n",k);
//Debug();
int max_r = k;//找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差) while(matrix[max_r].num[col]==0&&max_r<m)max_r++; /*for (i = k + 1; i < m; ++i)
{
if (iabs(matrix[i].num[col]) > iabs(matrix[max_r].num[col])) max_r = i;
}*/
if (max_r != k) //交换
{
for (i = k; i < n + 1; ++i) swap(matrix[k].num[i],matrix[max_r].num[i]);
}
/*if (matrix[k].num[col]!=0 ) //假设相应该列都为0,枚举该行的下一列
{
k--;
continue;
}*/
for (i = k + 1; i < m; ++i) //将k后边的col进行初等变换成行阶梯矩阵
{
if (matrix[i].num[col]!=0)
{
long long x1=matrix[i].num[col],x2=matrix[k].num[col];
for (j = col; j < n + 1; ++j)
{
matrix[i].num[j] = matrix[i].num[j] *x2- x1*matrix[k].num[j];
matrix[i].num[j] = (matrix[i].num[j]%p+p)%p;
}
//Debug();
}
}
} //Debug();
// 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这种行(a != 0). 即R(A) != R(A')无解
/*for (i = k; i < m; ++i)
{
if (iabs(matrix[i].num[col]) >eps) return -1;
}*/
// 2. 无穷解的情况: 在n * (n + 1)的增广阵中出现(0, 0, ..., 0)这种行。即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数. 即R(A) = R(A') < n
//printf("%d %d\n",k,n);
/*if (k < n)
{
//凝视处为求多解的自由变量
// 首先,自由变元有n - k个。即不确定的变元至少有n - k个.
int num = 0,freeidx;
for (i = k - 1; i >= 0; --i)
{
num = 0;// 用于推断该行中的不确定的变元的个数。假设超过1个。则无法求解。它们仍然为不确定的变元.
double tmp = matrix[i].num[n];
// 第i行一定不会是(0, 0, ..., 0)的情况,由于这种行是在第k行到第m行.
// 相同。第i行一定不会是(0, 0, ..., a), a != 0的情况。这种无解的.
for (j = 0; j < n; ++j)
{
if (iabs(matrix[i].num[j]) > eps && free_x[j])
{
num++;
freeidx = j;
}
}
if (num > 1) continue; // 无法求解出确定的变元.
// 说明就仅仅有一个不确定的变元free_index,那么能够求解出该变元,且该变元是确定的.
tmp = matrix[i].num[n];
for (j = 0; j < n; ++j)
{
if (iabs(matrix[i].num[j])>eps && j != freeidx) tmp -= matrix[i].num[j]*X[j];
}
X[freeidx] = tmp/matrix[i].num[freeidx];
free_x[freeidx] = 0;
}
return n - k;
}*/
// 3. 唯一解的情况: 在n * (n + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
for (i = k - 1; i >= 0; --i)
{
long long tmp = matrix[i].num[n];
for (j = i + 1; j < n; ++j)
{
tmp =((tmp- matrix[i].num[j]*X[j])%p+p)%p;
}
while(tmp%matrix[i].num[i])tmp+=p;
X[i] = ((tmp/matrix[i].num[i])%p+p)%p;
}
return 0;
}
const char s[9][10]= {"ABDE","ABC","BCEF","ADG","BDEFH","CFI","DEGH","GHI","EFHI"};
const int num[9]= {4,3,4,3,5,3,4,3,4}; int main()
{
p=4;
n=9;
m=9;
clearall(matrix,0);
for(int i=0; i<9; i++)
{
scanf("%d",&matrix[i].num[9]);
matrix[i].num[9]=(4-matrix[i].num[9])%4;
for(int j=0; j<num[i];j++)
{
matrix[s[i][j]-'A'].num[i]=1;
}
}
//Debug();
Guass();
bool flat=false;
//Debug();
for(int i=0; i<n; i++)
{
//printf("%lld\n",X[i]);
for(int j=0;j<X[i];j++)
{
if(flat)printf(" ");
printf("%d",i+1);
flat=true;
}
}
//Debug();
puts("");
return 0;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
POJ 1166 The Clocks的更多相关文章
- Poj 1166 The Clocks(bfs)
题目链接:http://poj.org/problem?id=1166 思路分析:题目要求求出一个最短的操作序列来使所有的clock为0,所以使用bfs: <1>被搜索结点的父子关系的组织 ...
- POJ 1166 The Clocks (暴搜)
发现对这样的模拟题根本没啥思路了,本来准备用bfs的.可是结果超时了,这是參考别的人代码写的: #include <stdio.h> #include <iostream> # ...
- POJ 1166 The Clocks (爆搜 || 高斯消元)
题目链接 题意: 输入提供9个钟表的位置(钟表的位置只能是0点.3点.6点.9点,分别用0.1.2.3)表示.而题目又提供了9的步骤表示可以用来调正钟的位置,例如1 ABDE表示此步可以在第一.二.四 ...
- POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)
依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...
- POJ 1166 The Clocks [BFS] [位运算]
1.题意:有一组3*3的只有时针的挂钟阵列,每个时钟只有0,3,6,9三种状态:对时针阵列有9种操作,每种操作只对特点的几个时钟拨一次针,即将时针顺时针波动90度,现在试求从初试状态到阵列全部指向0的 ...
- POJ 1166:The Clocks
The Clocks Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15357 Accepted: 6230 Descr ...
- POJ 1166 暴力搜索 即 枚举
e.... 米还是没有读懂题....T_T ..... e.... 这就是传说中的暴力吗....太血腥了....太暴力了...九重for循环....就这么赤裸裸的AC了.... 水是水了点..但是.. ...
- 高斯消元 分析 && 模板 (转载)
转载自:http://hi.baidu.com/czyuan_acm/item/dce4e6f8a8c45f13d7ff8cda czyuan 先上模板: /* 用于求整数解得方程组. */ #inc ...
- 高斯消元法~get√
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. ...
随机推荐
- linux 解决Ubuntu编译内核uImage出现问题“mkimage” command not found - U-Boot images will not be built问题
解决Ubuntu编译内核uImage出现问题“mkimage” command not found - U-Boot images will not be built问题 http://www.lin ...
- Microsoft.AspNetCore.Routing路由
Microsoft.AspNetCore.Routing路由 这篇随笔讲讲路由功能,主要内容在项目Microsoft.AspNetCore.Routing中,可以在GitHub上找到,Routing项 ...
- WCF技术剖析之十八:消息契约(Message Contract)和基于消息契约的序列化
原文:WCF技术剖析之十八:消息契约(Message Contract)和基于消息契约的序列化 [爱心链接:拯救一个25岁身患急性白血病的女孩[内有苏州电视台经济频道<天天山海经>为此录制 ...
- 面试中关于Java中涉及到知识点(转)
本篇文章会对面试中常遇到的Java技术点进行全面深入的总结,帮助我们在面试中更加得心应手,不参加面试的同学也能够借此机会梳理一下自己的知识体系,进行查漏补缺. 1. Java中的原始数据类型都有哪些, ...
- Linux服务安全之TcpWrapper篇
一.TcpWrapper的定义 任何以xinetd管理的服务都可以通过TcpWrapper来设置防火墙.简单地说,就是针对源IP或域进行允许或拒绝的设置,以决定该连接是否能够成功实现连接. 通过名称我 ...
- perl 登陆电信猫
登陆电信猫: use LWP::UserAgent; use HTTP::Date qw(time2iso str2time time2iso time2isoz); use Net::Ping; u ...
- poj 3778
这就是个超级水题……!!!!写一写来纪念一下自己的错误…… 如果某个学生的的成绩是其他俩个或三个学生成绩的和则给予奖励 直接暴力,所以一开始直接用数组标记两个人或三个人的和,但是忽略了这种情况 20( ...
- [置顶] java Gui 键盘监听事件
简单写一个java Gui键盘监听事件,实现的效果就是按下键盘控制台输出你按下的键.比如:按下A控制台就输出A 效果如图: 以下把实现的效果分为几个步骤: 1.新建一个窗体类继承窗体: 2.给这个窗体 ...
- hbase memstorelab
关于MemStore的补充 在通过HStore.add向store中加入�一个kv时,首先把数据写入到memstore中.这一点没有什么说明: publiclongadd(finalKeyValue ...
- find-a-jar-file-given-the-class-name
Save this as findclass.sh (or whatever), put it on your path and make it executable: #!/bin/sh find ...