http://acm.hdu.edu.cn/showproblem.php?pid=4089

Activation

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1500    Accepted Submission(s):
570

Problem Description
After 4 years' waiting, the game "Chinese Paladin 5"
finally comes out. Tomato is a crazy fan, and luckily he got the first release.
Now he is at home, ready to begin his journey.
But before starting the game,
he must first activate the product on the official site. There are too many
passionate fans that the activation server cannot deal with all the requests at
the same time, so all the players must wait in queue. Each time, the server
deals with the request of the first player in the queue, and the result may be
one of the following, each has a probability:
1. Activation failed: This
happens with the probability of p1. The queue remains unchanged and the server
will try to deal with the same request the next time.
2. Connection failed:
This happens with the probability of p2. Something just happened and the first
player in queue lost his connection with the server. The server will then remove
his request from the queue. After that, the player will immediately connect to
the server again and starts queuing at the tail of the queue.
3. Activation
succeeded: This happens with the probability of p3. Congratulations, the player
will leave the queue and enjoy the game himself.
4. Service unavailable: This
happens with the probability of p4. Something just happened and the server is
down. The website must shutdown the server at once. All the requests that are
still in the queue will never be dealt.
Tomato thinks it sucks if the server
is down while he is still waiting in the queue and there are no more than K-1
guys before him. And he wants to know the probability that this ugly thing
happens.
To make it clear, we say three things may happen to Tomato: he
succeeded activating the game; the server is down while he is in the queue and
there are no more than K-1 guys before him; the server is down while he is in
the queue and there are at least K guys before him.
Now you are to calculate
the probability of the second thing.
 
Input
There are no more than 40 test cases. Each case in one
line, contains three integers and four real numbers: N, M (1 <= M <= N
<= 2000), K (K >= 1), p1, p2, p3, p4 (0 <= p1, p2, p3, p4 <= 1, p1 +
p2 + p3 + p4 = 1), indicating there are N guys in the queue (the positions are
numbered from 1 to N), and at the beginning Tomato is at the Mth position, with
the probability p1, p2, p3, p4 mentioned above.
 
Output
A real number in one line for each case, the
probability that the ugly thing happens.
The answer should be rounded to 5
digits after the decimal point.
 
Sample Input
2 2 1
0.1 0.2 0.3 0.4
3 2 1
0.4 0.3 0.2 0.1
4 2 3
0.16 0.16 0.16 0.52
 
Sample Output
0.30427
0.23280
0.90343
学习:当前面的未知数,而后面也有未知数,看是否有常数项,最后列出一元一次方程。
题意:
有n人都是仙剑5的fans,现在要在官网上激活游戏,n个人排成一个队列(其中主角Tomato最初排名为m),
对于队列中的第一个人,在激活的时候有以下五种情况:
    1.激活失败:留在队列中继续等待下一次激活(概率p1)
    2.失去连接:激活失败,并且出队列然后排到队列的尾部(概率p2)
    3.激活成功:出队列(概率p3)
    4.服务器瘫:服务器停止服务了,所有人都无法激活了(概率p4)
求服务器瘫痪并且此时Tomato的排名<=k的概率。
题解:
是一个概率题,分析一下题意后发现和“dp求期望”的题目有点像,因为其中都有一种死循环的可能,
该题中,如果总是发生p1概率的情况那就是死循环了。然后想到一个二维dp:
dp[i][j]表示队列中有i个人,Tomato排在第j个,能发生所求事件的概率。
显然,dp[n][m]即为所求。
j == 1 : dp[i][1] = p1*dp[i][1] + p2*dp[i][i]   + p4;
2<=j<=k: dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1] + p4;
j > k  : dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1];
化简:
j == 1 : dp[i][1] = p*dp[i][i]   + p41;
2<=j<=k: dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1] + p41;
j > k  : dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1];
其中:
p   = p2 / (1 - p1);
p31 = p3 / (1 - p1);
p41 = p4 / (1 - p1);
现在可以循环 i = 1 -> n 递推求解dp[i],所以在求dp[i]时,dp[i-1]就相当于常数了,
设dp[i][j]的常数项为c[j]:
j == 1 : dp[i][1] = p*dp[i][i]   + c[1];
2<=j<=k: dp[i][j] = p*dp[i][j-1] + c[j];
j > k  : dp[i][j] = p*dp[i][j-1] + c[j];
在求dp[i]时,就相当于求“i元1次方程组”:
dp[i][1] = p*dp[i][i] + c[1];
dp[i][2] = p*dp[i][1] + c[2];
dp[i][3] = p*dp[i][2] + c[3];
...

dp[i][i] = p*dp[i][i-1] + c[i];

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const double eps=1e-;
double dp[][];
double pp[],c[];
int main()
{
int n,m,k,i,j;
double p1,p2,p3,p4;
while(~scanf("%d%d%d",&n,&m,&k))
{
memset(dp,,sizeof(dp));
scanf("%lf%lf%lf%lf",&p1,&p2,&p3,&p4);
if(p4<eps)
{
printf("0.00000\n");
continue;
}
dp[][]=p4/(-(p1+p2));
double p=p2/(-p1);
double p31=p3/(-p1);
double p41=p4/(-p1);
c[]=p41;
pp[]=;
for(i=;i<=n;i++)
pp[i]=p*pp[i-];
for(i=;i<=n;i++)
{
for(j=;j<=k&&j<=i;j++)
c[j]=p31*dp[i-][j-]+p41;
for(j=k+;j<=n&&j<=i;j++)
c[j]=p31*dp[i-][j-];
double temp=c[]*pp[i-];
for(j=;j<=n;j++)
temp+=c[j]*pp[i-j];
dp[i][i]=temp/(-pp[i]);
dp[i][]=p*dp[i][i]+c[];
for(j=;j<i;j++)
dp[i][j]=p*dp[i][j-]+c[j];
}
printf("%.5lf\n",dp[n][m]);
}
return ;
}

HDU-4089 Activation的更多相关文章

  1. HDU 4089 Activation 概率DP 难度:3

    http://acm.hdu.edu.cn/showproblem.php?pid=4089 这道题中一共有两个循环: 1.事件1 如果一直落在Activation failed事件上,那么就会重新继 ...

  2. HDU 4089 Activation:概率dp + 迭代【手动消元】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4089 题意: 有n个人在排队激活游戏,Tomato排在第m个. 每次队列中的第一个人去激活游戏,有可能 ...

  3. HDU 4089 Activation(概率DP)(转)

    11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况.   像概率dp,公式推出来就很容易写 ...

  4. [HDU 4089]Activation[概率DP]

    题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...

  5. 【HDU】4089 Activation

    http://acm.hdu.edu.cn/showproblem.php?pid=4089 题意: 有n个人排队等着在官网上激活游戏.主角排在第m个. 对于队列中的第一个人.有以下情况:1.激活失败 ...

  6. Activation HDU - 4089(概率dp)

    After 4 years' waiting, the game "Chinese Paladin 5" finally comes out. Tomato is a crazy ...

  7. HDU 4089 && UVa 1498 Activation 带环的概率DP

    要在HDU上交的话,要用滚动数组优化一下空间. 这道题想了很久,也算是想明白了,就好好写一下吧. P1:激活游戏失败,再次尝试. P2:连接失服务器败,从队首排到队尾. P3:激活游戏成功,队首的人出 ...

  8. Activation(hdu 4089)

    题目:仙5的激活序列.有以下4种情况: 1.注册失败,但是不影响队列顺序 ,概率为p1 2.连接失败,队首的人排到队尾,概率为p2 3.注册成功,队首离开队列,概率为p3 4.服务器崩溃,激活停止,概 ...

  9. Activation HDU - 4089 (概率DP)

    kuangbin的博客 强 #include <bits/stdc++.h> using namespace std; const int MAXN = 2005; const doubl ...

  10. 【HDOJ】4089 Activation

    1. 题目描述长度为n的等待队列,tomato处于第m个,有如下四种可能:(1)激活失败,概率为$p_1$,队列中的顺序不变:(2)连接失败,概率为$p_2$,队头玩家重新排在队尾:(3)激活成功,概 ...

随机推荐

  1. Bootstrap--全局CSS样式之排版

    Bootstrap的排版样式大致和html基本元素一样,没什么大的区别,就是对元素加了样式. (1)标题 HTML 中的所有标题标签,<h1> 到 <h6> 均可使用.另外,还 ...

  2. OPENQUERY

    SELECT * FROM OPENQUERY(saql007,' SELECT  col1,col2,col3 FROM dbname.shemaname.tablename WHERE  (1=1 ...

  3. SqlServer中的merge操作,相当地风骚

    今天在一个存储过程中看见了merge这个关键字,第一个想法是,这个是配置管理中的概念吗,把相邻两次的更改合并到一起.后来在technet上搜索发现别有洞天,原来是另外一个sql关键字,t-sql的语法 ...

  4. vsftpd服务安装,配置,限制目录

    一.下载版本:vsftpd-2.0.5-16.el5_4.1.i386.rpm 二.安装:rpm -ivh vsftpd-2.0.5-16.el5_4.1.i386.rpm 三.配置: vsftpd. ...

  5. 系统设计 - IOS 程序插件及功能动态更新思路

    所用框架及语言 IOS客户端-Wax(开发愤怒的小鸟的连接Lua 和 Objc的框架),Lua,Objc, 服务端-Java(用于返回插件页面)        由 于Lua脚本语言,不需要编译即可运行 ...

  6. windows上SVN服务器以及客户端TortoiseSVN的安装配置

    (1)svn的安装 1. 下载软件:Setup-Subversion-1.7.5.msi,安装就很容易了,一路NEXT 2. 把SVN的bin文件夹路径添加到环境变量中 把svn安装目录下的bin路径 ...

  7. Codeforces 551D GukiZ and Binary Operations(矩阵快速幂)

    Problem D. GukiZ and Binary Operations Solution 一位一位考虑,就是求一个二进制序列有连续的1的种类数和没有连续的1的种类数. 没有连续的1的二进制序列的 ...

  8. WF学习笔记(三)

    Collection 集合 -AddtoCollection<T> 添加项到集合 :[AddtoCollection]可以将一个项添加到[Collection]集合中 ,[Item]属性用 ...

  9. transcode_step()在转码过程中对pts、dts、duration的处理

    对pts.dts.duration的处理主要集中在两大函数里面 1.process_input()读入数据并处理,放到滤镜里面 2.reap_filters()从滤镜读出数据,处理后写入文件 proc ...

  10. ubuntu 选择最快得源

    root权限.新版的Ubuntu(12.04)已经不再自带类似apt-spy之类的选择最快的源的命令行工具,默认的源经常那个龟速啊……手动测试哪个源在当前网络环境下会比较快还是比较累的,这里整理一个脚 ...