【题意】

  给定一张航空图, 图中顶点代表城市, 边代表 2 城市间的直通航线。 现要求找出一条满足下述限制条件的且途经城市最多的旅行路线。
(1) 从最西端城市出发,单向从西向东途经若干城市到达最东端城市,然后再单向从东向西飞回起点(可途经若干城市) 。
(2) 除起点城市外, 任何城市只能访问 1 次。

输入文件示例
input.txt
8 9
Vancouver
Yellowknife
Edmonton
Calgary
Winnipeg
Toronto
Montreal
Halifax
Vancouver Edmonton
Vancouver Calgary
Calgary Winnipeg
Winnipeg Toronto
Toronto Halifax
Montreal Halifax
Edmonton Montreal
Edmonton Yellowknife
Edmonton Calgary

输出文件示例
output.txt
7
Vancouver
Edmonton
Montreal
Halifax
Toronto
Winnipeg
Calgary
Vancouver

【分析】

  只有我这种智障才会想半天 保证 从西向东怎么破吧。。

  都知道是怎么做的了。。。

  这种回路其实相当于从起点到终点走两次  然后路径不相交。

  不相交这一点约束了我们不能把两次路径分开做的。。  

  点只能走一遍,拆点,流量为1,费用为1.

  然后按照原图也建边。(只能从西往东走,双向边事实上只建一条)

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
using namespace std;
#define Maxn 2010
#define INF 0xfffffff map<string,int> M;
int n,m; struct node
{
int x,y,f,o,c,next;
}t[Maxn*];int len;
int first[Maxn]; int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} void ins(int x,int y,int f,int c)
{
t[++len].x=x;t[len].y=y;t[len].f=f;t[len].c=c;
t[len].next=first[x];first[x]=len;t[len].o=len+;
t[++len].x=y;t[len].y=x;t[len].f=;t[len].c=-c;
t[len].next=first[y];first[y]=len;t[len].o=len-;
} int st,ed;
queue<int > q;
int dis[Maxn],pre[Maxn],flow[Maxn];
bool inq[Maxn];
bool bfs()
{
while(!q.empty()) q.pop();
memset(dis,-,sizeof(dis));
memset(inq,,sizeof(inq));
q.push(st);dis[st]=;flow[st]=INF;inq[st]=;
while(!q.empty())
{
int x=q.front();
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]<dis[x]+t[i].c)
{
dis[y]=dis[x]+t[i].c;
pre[y]=i;
flow[y]=mymin(flow[x],t[i].f);
if(!inq[y])
{
inq[y]=;
q.push(y);
}
}
}
inq[x]=;q.pop();
}
if(dis[ed]==-) return ;
return ;
} void output()
{
for(int i=;i<=len;i+=)
printf("%d->%d %d %d\n",t[i].x,t[i].y,t[i].f,t[i].c);
printf("\n");
} void max_flow()
{
int ans=,sum=;
while(bfs())
{
sum+=dis[ed]*flow[ed];
ans+=flow[ed];
int now=ed;
while(now!=st)
{
t[pre[now]].f-=flow[ed];
t[t[pre[now]].o].f+=flow[ed];
now=t[pre[now]].x;
}
}
if(ans<) printf("No Solution!\n");
else
{
printf("%d\n",sum-);
}
} string s[Maxn],ss;
bool vis[Maxn*Maxn];
void dfs(int x,bool qq)
{
if(x==n) return;
if(x<n)
{
if(qq) cout<<s[x]<<endl;
dfs(x+n,qq);
if(!qq) cout<<s[x]<<endl;
return;
}
for(int i=first[x];i;i=t[i].next) if(t[i].f==&&!vis[i])
{
vis[i]=;
dfs(t[i].y,qq);
return;
}
} void init()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
cin>>s[i];
M[s[i]]=i;
}
for(int i=;i<=m;i++)
{
int x,y,tt;
cin>>ss;
x=M[ss];
cin>>ss;
y=M[ss];
if(x==&&y==n) ins(x+n,y,,);
else ins(x+n,y,,);
}
st=;ed=n+n;
ins(,+n,,);ins(n,n+n,,);
for(int i=;i<n;i++) ins(i,i+n,,);
memset(vis,,sizeof(vis));
} int main()
{
init();
max_flow();
dfs(,);
cout<<s[n]<<endl;
dfs(,);
return ;
}

有没有SBJ ,桑心。。。

本机测的最长路径长度是对的,方案懒得看了,应该没什么问题吧。。

2016-11-04 19:39:24

【网络流24题】No.11(航空路线问题 最长不相交路径 最大费用流)的更多相关文章

  1. 【网络流24题】No.21 (最长 k 可重区间集问题 最长不相交路径 最大费用流)

    [] 输入文件示例input.txt4 21 76 87 109 13 输出文件示例output.txt15 [分析] 直接co题解好了,写得挺全.. [建模方法] 方法1 按左端点排序所有区间,把每 ...

  2. 【网络流24题】 No.10 餐巾计划问题 (线性规划网络优化 最小费用最大流)

    [题意] 一个餐厅在相继的 N 天里, 每天需用的餐巾数不尽相同. 假设第 i 天需要 ri 块餐巾(i=1,2,-, N). 餐厅可以购买新的餐巾,每块餐巾的费用为 p 分:或者把旧餐巾送到快洗部, ...

  3. 【网络流24题】No.16 数字梯形问题 (不相交路径 最大费用流)

    [题意] 给定一个由 n 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动, 形成一条从梯形的顶至底的路径.规则 1: ...

  4. 【算法】【网络流24题】巨坑待填(成功TJ,有时间再填)

    ------------------------------------------------------------------------------------ 17/24 --------- ...

  5. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

  6. 【题解】【网络流24题】航空路线问题 [P2770] [Loj6122]

    [题解][网络流24题]航空路线问题 [P2770] [Loj6122] 传送门:航空路线问题 \([P2770]\) \([Loj6122]\) [题目描述] 给出一张有向图,每个点(除了起点 \( ...

  7. 【线性规划与网络流 24题】已完成(3道题因为某些奇怪的原因被抛弃了QAQ)

    写在前面:SDOI2016 Round1滚粗后蒟蒻开始做网络流来自我拯救(2016-04-11再过几天就要考先修课,现在做网络流24题貌似没什么用←退役节奏) 做的题目将附上日期,见证我龟速刷题. 1 ...

  8. 网络流基础&网络流24题

    网络最大流 dinic+当前弧优化. const int N=10007,M=100007,inf=1e9; int s,t,head[N],ver[M],edge[M],Next[M],tot=1, ...

  9. 【题解】【网络流24题】汽车加油行驶问题 [P4009] [Loj6223]

    [题解][网络流24题]汽车加油行驶问题 [P4009] [Loj6223] 传送门:汽车加油行驶问题 \([P4009]\) \([Loj6223]\) [题目描述] 给出一个 \(N \times ...

随机推荐

  1. kali2.0如何安装中文输入法

    由于kali的更新源是国外网站,替换成国内的镜像站,具体操作如下: 打开终端输入 leafpad /etc/apt/sources.list   把下面的源粘贴进去,原有内容注释掉 #中科大源deb  ...

  2. SQL查询数据库表字段值不为空或Null的所有列

    ) set @TableName = 'Agency' -- 表名 declare @querySql nvarchar(max) set @querySql = 'select ' ) declar ...

  3. MyFramework框架搭建(一)DAL层

    一直以来有一个想法,搭建一个属于自己的框架,将自己学到的东西整合到框架里,不断的完善,让它随着我的成长而成长,下面介绍我第一阶段的总结:DAL层搭建 一.基础配置 1.我用的是Ibatis.net框架 ...

  4. Java根据出生年月日获取到当前日期的年月日

    源码链接:http://pan.baidu.com/s/1sj61IUD

  5. Java_LIST使用方法和四种遍历arrayList方法

    1.List接口提供的适合于自身的常用方法均与索引有关,这是因为List集合为列表类型,以线性方式存储对象,可以通过对象的索引操作对象.   List接口的常用实现类有ArrayList和Linked ...

  6. cognos 10.2.2 搭建网关做负载均衡

    最近要设计cognos服务器灾备模式,所以想到了cognos10自带的gateway负载均衡模式,搭建起来还是挺简洁的 设计背景: cognos主服务器:231 cognos灾备服务器:238 gat ...

  7. Ext.Net学习笔记02:Ext.Net用法概览

    这两天越来越觉得Ext.Net很强大,如果运用熟练可以极大的提高编程效率.如果你也要学习Ext.Net,推荐你看一下<Ext.Net Web 应用程序开发教程>. Ext.Net与ExtJ ...

  8. DailyNote

    删除node-modules文件夹 npm install -g rimraf rimraf node_modules 绘制一条贝塞尔曲线: context.quadraticCurveTo(x1,y ...

  9. css滚动条样式

    1.横向滚动条:(abeamScroll) <div style="width:400px;height:200px;overflow-x:auto;overflow-y:hidden ...

  10. 哥德巴赫猜想证明(C语言实现50以内的正偶数证明)

    <一>哥德巴赫猜想内容: 一个充分大的偶数(大于或等于6)可以分解为两个素数之和. <二>实现要点: 要点: 判断素数(质数):除了1和本身没有其他约数. 最小的质数:2 判断 ...