Description

Air Bovinia is planning to connect the N farms (1 <= N <= 200) that the cows live on. As with any airline, K of these farms (1 <= K <= 100, K <= N) have been selected as hubs. The farms are conveniently numbered 1..N, with farms 1..K being the hubs. Currently there are M (1 <= M <= 10,000) one-way flights connecting these farms. Flight i travels from farm u_i to farm v_i, and costs d_i dollars (1 <= d_i <= 1,000,000). The airline recently received a request for Q (1 <= Q <= 10,000) one-way trips. The ith trip is from farm a_i to farm b_i. In order to get from a_i to b_i, the trip may include any sequence of direct flights (possibly even visiting the same farm multiple times), but it must include at least one hub (which may or may not be be the start or the destination). This requirement may result in there being no valid route from a_i to b_i. For all other trip requests, however, your goal is to help Air Bovinia determine the minimum cost of a valid route. 
 

Input

* Line 1: Four integers: N, M, K, and Q. 
* Lines 2..1+M: Line i+1 contains u_i, v_i, and d_i for flight i. 
* Lines 2+M..1+M+Q: Line 1+M+i describes the ith trip in terms of a_i and b_i 

Output

* Line 1: The number of trips (out of Q) for which a valid route is possible. 
* Line 2: The sum, over all trips for which a valid route is possible, of the minimum possible route cost.

Sample Input

3 3 1 3
3 1 10
1 3 10
1 2 7
3 2
2 3
1 2
INPUT DETAILS: There are three farms (numbered 1..3); farm 1 is a hub. There is a $10 flight from farm 3 to farm 1, and so on. We wish to look for trips from farm 3 to farm 2, from 2->3, and from 1->2.

Sample Output

2
24
OUTPUT DETAILS: The trip from 3->2 has only one possible route, of cost 10+7. The trip from 2->3 has no valid route, since there is no flight leaving farm 2. The trip from 1->2 has only one valid route again, of cost 7.
Contest has ended. No further submissions allowed.
 
题意是n个点m条有向边,求两两之间的最短路,要求路径上必须经过编号1~k的至少一个点
先建完图分层,下层把上面复制一遍,然后1~k的点从上层向下层连边权为0的边,跑floyd
我真是bi了狗了开个200*200的数组RE个不停 还被黄巨大批判一番
 
 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define inf 100000000000
using namespace std;
int n,m,k,q,tot;
long long ans;
long long dist[][];
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int main()
{
for(int i=;i<=;i++)for(int j=;j<=;j++)dist[i][j]=inf;
n=read();m=read();k=read();q=read();
for(int i=;i<=m;i++)
{
int x=read(),y=read();
dist[x][y]=dist[x+n][y+n]=read();
}
for(int i=;i<=k;i++)dist[i][n+i]=;
for(int l=;l<=*n;l++)
for (int i=;i<=*n;i++)
for (int j=;j<=*n;j++)
if (dist[i][j]>dist[i][l]+dist[l][j])
dist[i][j]=dist[i][l]+dist[l][j];
for (int i=;i<=q;i++)
{
int x=read(),y=read();
if (dist[x][n+y]>1e10)continue;
tot++;ans+=dist[x][n+y];
}
printf("%d\n%lld",tot,ans);
}

bzoj4097

bzoj4097 [Usaco2013 dec]Vacation Planning的更多相关文章

  1. bzoj 4097: [Usaco2013 dec]Vacation Planning

    4097: [Usaco2013 dec]Vacation Planning Description Air Bovinia is planning to connect the N farms (1 ...

  2. [Usaco2013 DEC] Vacation Planning

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4093 [算法] 对于k个枢纽 , 分别在正向图和反向图上跑dijkstra最短路 , ...

  3. 【Floyd(并非水题orz)】BZOJ4093-[Usaco2013 Dec]Vacation Planning

    最近刷水太多标注一下防止它淹没在silver的水题中……我成为了本题,第一个T掉的人QAQ [题目大意] Bovinia设计了连接N (1 < = N < = 20,000)个农场的航班. ...

  4. 【BZOJ4094】[Usaco2013 Dec]Optimal Milking 线段树

    [BZOJ4094][Usaco2013 Dec]Optimal Milking Description Farmer John最近购买了N(1 <= N <= 40000)台挤奶机,编号 ...

  5. bzoj 4094: [Usaco2013 Dec]Optimal Milking

    4094: [Usaco2013 Dec]Optimal Milking Description Farmer John最近购买了N(1 <= N <= 40000)台挤奶机,编号为1 . ...

  6. bzoj4096 [Usaco2013 dec]Milk Scheduling

    Description Farmer John has N cows that need to be milked (1 <= N <= 10,000), each of which ta ...

  7. [USACO 13DEC]Vacation Planning(gold)

    Description Air Bovinia operates flights connecting the N farms that the cows live on (1 <= N < ...

  8. [USACO13DEC]假期计划(黄金)Vacation Planning (gold)

    题目翻译不好,这里给出一份 题目背景 Awson是某国际学校信竞组的一只大佬.由于他太大佬了,于是干脆放弃了考前最后的集训,开车(他可是老司机)去度假.离开学校前,他打开地图,打算做些规划. 题目描述 ...

  9. BZOJ4095 : [Usaco2013 Dec]The Bessie Shuffle

    首先将排列和整个序列以及询问都反过来,问题变成给定一个位置$x$,问它经过若干轮置换后会到达哪个位置. 每次置换之后窗口都会往右滑动一个,因此其实真实置换是$p[i]-1$. 对于每个询问,求出轮数, ...

随机推荐

  1. Python下载漫画

    上午起来提不起劲,于是就用电脑看漫画,但是在线看漫画好烦,就想下下来看.一个一个点太麻烦,于是花了点时间用python写了个demo,把爱漫画的漫画下载下来,这样就可以随时随地看了.这也是我首次尝试用 ...

  2. Android客户端与服务端交互之登陆示例

    Android客户端与服务端交互之登陆示例 今天了解了一下android客户端与服务端是怎样交互的,发现其实跟web有点类似吧,然后网上找了大神的登陆示例,是基于IntentService的 1.后台 ...

  3. javabean、DTO、VO

    一.javabean 一. javabean 是什么? Bean的中文含义是“豆子”,顾名思义,JavaBean是指一段特殊的Java类, 就是有默然构造方法,只有get,set的方法的java类的对 ...

  4. 判断在Android手机内, 页面重新刷新一次

    <script type="text/javascript"> var UA = navigator.userAgent.toLowerCase(); //androi ...

  5. Oracle存储过程及函数

    1.在Oracle中,存储过程包括三部分组成:定义部分.执行部分.和异常处理部分(即例外) eg1:输入员工编号,查询员工的姓名和薪资 create or repalce  procedure myp ...

  6. 【转】 iOS开发数据库篇—SQLite简单介绍

    开始学SQLite啦, 原文: http://www.cnblogs.com/wendingding/p/3868893.html iOS开发数据库篇—SQLite简单介绍 一.离线缓存 在项目开发中 ...

  7. CSP内容安全策略

    在浏览网页的过程中,尤其是移动端的网页,经常看到有很多无关的广告,其实大部分广告都是所在的网络劫持了网站响应的内容,并在其中植入了广告代码.为了防止这种情况发生,我们可以使用CSP来快速的阻止这种广告 ...

  8. [个人原创]关于java中对象排序的一些探讨(一)

    有的时候我们需要将自己定义的对象,有序输出.因为一般我们程序的中间结果需要存储在容器里,那么怎样对容器中的对象按照一定次序输出就是程序员经常需要考虑的问题.本片文章探讨了怎样有序化输出容器中的对象的问 ...

  9. linux dd命令测试U盘读写速度

    1. dd命令简述: if=输入文件, of=输出文件, ibs=一次读取字节数, obs=一次写入字节数, bs=设置一次读取写入的字节数, skip=跳过的bs数, count=拷贝的块数 2. ...

  10. Java简介(4)-关键字

    abstract assert boolean break byte byte case catch char class const continue default do-while double ...