统计学习导论:基于R应用——第五章习题
第五章习题
1.
我们主要用到下面三个公式:
根据上述公式,我们将式子化简为
对求导即可得到得到公式5-6。
2.
(a)
1 - 1/n
(b)
自助法是有有放回的,所以第二个的概率还是1 - 1/n
(c)
由于自助法是有放回的,且每次抽样都是独立事件,所以概率是(1 - 1/n)^n
(d)
答案是1-(1-1/5)^5 = 67.2%
(e)
63.4%
(f)
63.2%
(g)
pr = function(n) return(1 - (1 - 1/n)^n)
x = 1:1e+05
plot(x, pr(x))
3题和4题略
5.
(a)
library(ISLR)
summary(Default) attach(Default) set.seed(1)
glm.fit = glm(default ~ income + balance, data = Default, family = binomial)
(b)
train = sample(dim(Default)[1], dim(Default)[1]/2)
glm.fit = glm(default ~ income + balance, data = Default, family = binomial, subset = train)
glm.pred = rep("No", dim(Default)[1]/2)
glm.probs = predict(glm.fit, Default[-train, ], type = "response")
glm.pred[glm.probs > 0.5] = "Yes"
mean(glm.pred != Default[-train, ]$default)
(c)
把(b)跑三遍。。。
(d)
上面代码在拟合逻辑回归的时候加个变量即可
6.
(a)
library(ISLR)
summary(Default)
attach(Default) set.seed(1)
glm.fit = glm(default ~ income + balance, data = Default, family = binomial)
summary(glm.fit)
(b)
boot.fn = function(data, index) return(coef(glm(default ~ income + balance, data = data, family = binomial, subset = index)))
(c)
library(boot)
boot(Default, boot.fn, 50)
7.
(a)
library(ISLR)
summary(Weekly)
set.seed(1)
attach(Weekly) glm.fit = glm(Direction ~ Lag1 + Lag2, data = Weekly, family = binomial)
summary(glm.fit)
(b)
glm.fit = glm(Direction ~ Lag1 + Lag2, data = Weekly[-1, ], family = binomial)
summary(glm.fit)
(c)
predict.glm(glm.fit, Weekly[1, ], type = "response") > 0.5
(d)
count = rep(0, dim(Weekly)[1])
for (i in 1:(dim(Weekly)[1])) {
glm.fit = glm(Direction ~ Lag1 + Lag2, data = Weekly[-i, ], family = binomial)
is_up = predict.glm(glm.fit, Weekly[i, ], type = "response") > 0.5
is_true_up = Weekly[i, ]$Direction == "Up"
if (is_up != is_true_up)
count[i] = 1
}
sum(count)
(e)
mean(count)
8.
(a)
n为100,p为2
(b)
set.seed(1)
y = rnorm(100)
x = rnorm(100)
y = x - 2 * x^2 + rnorm(100)
plot(x, y)
(c)
library(boot)
Data = data.frame(x, y)
set.seed(1) glm.fit = glm(y ~ x)
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 2))
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 3))
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 4))
cv.glm(Data, glm.fit)$delta
(d)
set.seed(10)
glm.fit = glm(y ~ x)
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 2))
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 3))
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 4))
cv.glm(Data, glm.fit)$delta
结果一样。。。
(e)
二次的最小
9.
(a)
library(MASS)
summary(Boston) set.seed(1)
attach(Boston) medv.mean = mean(medv)
medv.mean
(b)
medv.err = sd(medv)/sqrt(length(medv))
medv.err
(c)
boot.fn = function(data, index) return(mean(data[index]))
library(boot)
bstrap = boot(medv, boot.fn, 1000)
bstrap
(d)
t.test(medv)
c(bstrap$t0 - 2 * 0.4119, bstrap$t0 + 2 * 0.4119)
(e)
medv.med = median(medv)
medv.med
(f)
boot.fn = function(data, index) return(median(data[index]))
boot(medv, boot.fn, 1000)
(g)
medv.tenth = quantile(medv, c(0.1))
medv.tenth
(h)
boot.fn = function(data, index) return(quantile(data[index], c(0.1)))
boot(medv, boot.fn, 1000)
统计学习导论:基于R应用——第五章习题的更多相关文章
- 统计学习导论:基于R应用——第三章习题
第三章习题 部分证明题未给出答案 1. 表3.4中,零假设是指三种形式的广告对TV的销量没什么影响.而电视广告和收音机广告的P值小说明,原假设是错的,也就是电视广告和收音机广告均对TV的销量有影响:报 ...
- 统计学习导论:基于R应用——第四章习题
第四章习题,部分题目未给出答案 1. 这个题比较简单,有高中生推导水平的应该不难. 2~3证明题,略 4. (a) 这个问题问我略困惑,答案怎么直接写出来了,难道不是10%么 (b) 这个答案是(0. ...
- 统计学习导论:基于R应用——第二章习题
目前在看统计学习导论:基于R应用,觉得这本书非常适合入门,打算把课后习题全部做一遍,记录在此博客中. 第二章习题 1. (a) 当样本量n非常大,预测变量数p很小时,这样容易欠拟合,所以一个光滑度更高 ...
- 《学习Opencv》第五章 习题6
这是第五章 习题5.6的结合版,其中实现了摄像头抓拍功能,能够成功运行. #include "stdafx.h" #include "cv.h" #includ ...
- 《零成本实现Web自动化测试--基于Selenium》 第五章 Selenium-RC
一. 简介 Selenium-RC可以适应更复杂的自动化测试需求,而不仅仅是简单的浏览器操作和线性执行.Selenium-RC能够充分利用编程语言来构建更复杂的自动化测试案例,例如读写文件.查询数据库 ...
- 《Python 学习手册4th》 第十五章 文档
''' 时间: 9月5日 - 9月30日 要求: 1. 书本内容总结归纳,整理在博客园笔记上传 2. 完成所有课后习题 注:“#” 后加的是备注内容 (每天看42页内容,可以保证月底看完此书) “重点 ...
- The Definitive Guide To Django 2 学习笔记(九) 第五章 模型 (一)数据库访问
以MySql数据库为例,先到http://dev.mysql.com/downloads/connector/python/处下载MysqlConnector for python的连接器. from ...
- C和指针 第十五章 习题
15.8 十六进制倾印码 #include <stdio.h> #include <stdlib.h> #include <string.h> #include & ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
随机推荐
- phpcms V9 内容模型管理(转)
转自:http://www.cnblogs.com/Braveliu/p/5102627.html [1]理解模型 模型,系统知识的抽象表示.既然抽象了,那就得脑补一下.大家都是面向对象设计的专业人员 ...
- SQL Server Analysis Services 数据挖掘(1)
来源: http://technet.microsoft.com/zh-cn/library/dn633476.aspx 假如你有一个购物类的网站,那么你如何给你的客户来推荐产品呢?这个功能在很多 电 ...
- C#应用程序获取项目路径的方法总结
一.非Web程序 //基目录,由程序集冲突解决程序用来探测程序集 1.AppDomain.CurrentDomain.BaseDirectory //当前工作目录的完全限定路径2.Envi ...
- js touch触屏原理分析
之前我们做过许多触屏的特效,那么,今天,我们来分析下js的触屏原理.事实上,大家百度一下js touch基本上可以找到这文章“指尖下的js ——多触式web前端开发之一:对于Touch的处理”,我想这 ...
- linux下svn客户端报错Cannot negotiate authentication mechanism的解决方法
svn客户端报错Cannot negotiate authentication mechanism的解决方法: 问题出现的原因之一: 因为SVN服务器配置了saslauthd服务用来实现与ldap的对 ...
- 得到某个进程所有线程ID和入口地址
#include <windows.h> #include <tlhelp32.h> #include "iostream" using namespace ...
- 关于Java(标识符规则)
Java 是大小写敏感的语言. Java 标识符组成 Java 标识符组成: 字母,数字,下划线和美元符 $ Java 标识符规则 仅包含 字母,数字,下划线和美元符 开头不能使数字 不能使 Java ...
- BZOJ 3572 世界树
Description 世界树是一棵无比巨大的树,它伸出的枝干构成了整个世界.在这里,生存着各种各样的种族和生灵,他们共同信奉着绝对公正公平的女神艾莉森,在他们的信条里,公平是使世界树能够生生不息.持 ...
- Arbitrage
Description Arbitrage is the use of discrepancies in currency exchange rates to transform one unit o ...
- CSS中的高度
https://developer.mozilla.org/en-US/docs/Web/API/element.clientHeight Element.clientHeight是只读属性,以像素为 ...