Tired of boring dates, Leha and Noora decided to play a game.

Leha found a tree with n vertices numbered from 1 to n. We remind you that tree is an undirected graph without cycles. Each vertex v of a tree has a number av written on it. Quite by accident it turned out that all values written on vertices are distinct and are natural numbers between 1 and n.

The game goes in the following way. Noora chooses some vertex u of a tree uniformly at random and passes a move to Leha. Leha, in his turn, chooses (also uniformly at random) some vertex v from remaining vertices of a tree (v ≠ u). As you could guess there are n(n - 1) variants of choosing vertices by players. After that players calculate the value of a function f(u, v) = φ(au·av) · d(u, v) of the chosen vertices where φ(x) is Euler's totient function and d(x, y) is the shortest distance between vertices x and y in a tree.

Soon the game became boring for Noora, so Leha decided to defuse the situation and calculate expected value of function f over all variants of choosing vertices u and v, hoping of at least somehow surprise the girl.

Leha asks for your help in calculating this expected value. Let this value be representable in the form of an irreducible fraction . To further surprise Noora, he wants to name her the value .

Help Leha!

Input

The first line of input contains one integer number n (2 ≤ n ≤ 2·105)  — number of vertices in a tree.

The second line contains n different numbers a1, a2, ..., an (1 ≤ ai ≤ n) separated by spaces, denoting the values written on a tree vertices.

Each of the next n - 1 lines contains two integer numbers x and y (1 ≤ x, y ≤ n), describing the next edge of a tree. It is guaranteed that this set of edges describes a tree.

Output

In a single line print a number equal to P·Q - 1 modulo 109 + 7.

Examples
Input

Copy
3
1 2 3
1 2
2 3
Output
333333338
Input

Copy
5
5 4 3 1 2
3 5
1 2
4 3
2 5
Output
8
Note

Euler's totient function φ(n) is the number of such i that 1 ≤ i ≤ n,and gcd(i, n) = 1, where gcd(x, y) is the greatest common divisor of numbers x and y.

There are 6 variants of choosing vertices by Leha and Noora in the first testcase:

  • u = 1, v = 2, f(1, 2) = φ(a1·a2d(1, 2) = φ(1·2)·1 = φ(2) = 1
  • u = 2, v = 1, f(2, 1) = f(1, 2) = 1
  • u = 1, v = 3, f(1, 3) = φ(a1·a3d(1, 3) = φ(1·3)·2 = 2φ(3) = 4
  • u = 3, v = 1, f(3, 1) = f(1, 3) = 4
  • u = 2, v = 3, f(2, 3) = φ(a2·a3d(2, 3) = φ(2·3)·1 = φ(6) = 2
  • u = 3, v = 2, f(3, 2) = f(2, 3) = 2

Expected value equals to . The value Leha wants to name Noora is 7·3 - 1 = 7·333333336 = 333333338 .

In the second testcase expected value equals to , so Leha will have to surprise Hoora by number 8·1 - 1 = 8 .

$\varphi(a_i*a_j)=\frac{\varphi(a_i)\varphi(a_j)gcd(a_i,a_j)}{\varphi(gcd(a_i,a_j))}$
$\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$f(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$g(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[d|gcd(a_i,a_j)]$
$g(d)=\sum_{d|x}^{n}f(x)$
$f(d)=\sum_{d|x}^{n}\mu(\frac{x}{d})g(x)$
$f(d)=\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
$ans=\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
令$T=id$
$ans=\sum_{T=1}^{n}g(T)\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
令$h(T)=\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
对于g(d)有
$g(d)=\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)(dep_i+dep_j-2*dep_lca)$
$g(d)=\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1 且d|a_j}^{n}\varphi(a_j)-2*\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)*dep_lca$
$\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1且d|a_j}^{n}\varphi(a_j)=2*\sum_{i=1且d|a_i}^{n}\varphi(a_i)*dep_i*Sum$

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
struct Node
{
int next,to;
}edge[],edge2[];
int num,head[],head2[],mu[],phi[],vis[],inv[],Mod=1e9+;
int n,tot,prime[],h[],dep[],fa[][],dfn[],cnt,size[],st[];
int bin[],ed[],flag[],ans,a[],sum,f[],l[],b[],top,g[];
int id[];
bool cmp(int a,int b)
{
return dfn[a]<dfn[b];
}
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
void add2(int u,int v)
{
num++;
edge2[num].next=head2[u];
head2[u]=num;
edge2[num].to=v;
}
int qpow(int x,int y)
{
int res=;
while (y)
{
if (y&) res=1ll*res*x%Mod;
x=1ll*x*x%Mod;
y>>=;
}
return res;
}
void prework()
{int i,j;
mu[]=phi[]=;
inv[]=;
for (i=;i<=n;i++)
inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
for (i=;i<=n;i++)
{
if (vis[i]==)
{
++tot;
prime[tot]=i;
mu[i]=-;
phi[i]=i-;
}
for (j=;j<=tot;j++)
{
if (1ll*i*prime[j]>n) break;
vis[i*prime[j]]=;
if (i%prime[j]==)
{
phi[i*prime[j]]=1ll*phi[i]*prime[j];
break;
}
else
{
phi[i*prime[j]]=1ll*phi[i]*(prime[j]-);
mu[i*prime[j]]=-mu[i];
}
}
}
for (i=;i<=n;i++)
{
for (j=;j<=n&&1ll*i*j<=n;j++)
{
h[i*j]+=1ll*mu[j]*i%Mod*inv[phi[i]]%Mod;
h[i*j]%=Mod;
}
}
}
int lca(int x,int y)
{int i;
if (dep[x]<dep[y]) swap(x,y);
for (i=;i>=;i--)
if (dep[fa[x][i]]>=dep[y])
x=fa[x][i];
if (x==y) return x;
for (i=;i>=;i--)
{
if (fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
}
int get_dis(int x,int y)
{
return dep[x]+dep[y]-*dep[lca(x,y)];
}
void dfs(int x,int pa)
{int i;
dep[x]=dep[pa]+;
dfn[x]=++cnt;
size[x]=;
for (i=;bin[i]<=dep[x];i++)
fa[x][i]=fa[fa[x][i-]][i-];
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==pa) continue;
fa[v][]=x;
dfs(v,x);
size[x]+=size[v];
}
ed[x]=cnt;
}
int DP(int x)
{
int s1=,s2=;
if (flag[x])
{
ans+=2ll*phi[a[x]]%Mod*sum%Mod*dep[x]%Mod;
ans%=Mod;
f[x]=phi[a[x]];
s1=1ll*f[x]*f[x]%Mod*dep[x]%Mod;
}
else f[x]=;
for (int i=head2[x];i;i=edge2[i].next)
{
int v=edge2[i].to;
DP(v);
s2=(s2+1ll*f[x]*f[v]%Mod*dep[x]%Mod)%Mod;
f[x]=(f[x]+f[v])%Mod;
}
ans=((ans-4ll*s2%Mod)%Mod-2ll*s1%Mod)%Mod;
ans=(ans+Mod)%Mod;
}
void solve(int x)
{int i,Lca;
int tot=;sum=;
for (i=x;i<=n;i+=x)
flag[l[++tot]=id[i]]=,b[tot]=l[tot],sum=(sum+phi[i])%Mod;
sort(l+,l+tot+,cmp);
Lca=l[];
for (i=;i<=tot;i++)
if (ed[l[i-]]<dfn[l[i]]) l[++tot]=lca(l[i],l[i-]),Lca=lca(Lca,l[i]);
l[++tot]=Lca;
sort(l+,l+tot+,cmp);
tot=unique(l+,l+tot+)-l-;
top=;num=;ans=;
st[++top]=Lca;
for (i=;i<=tot;i++)
{
while (top&&ed[st[top]]<dfn[l[i]]) top--;
add2(st[top],l[i]);
//cout<<x<<' '<<st[top]<<' '<<l[i]<<endl;
st[++top]=l[i];
}
DP(Lca);
g[x]=ans%Mod;
for (i=;i<=tot;i++) flag[l[i]]=,head2[l[i]]=;
}
int main()
{int i,j,u,v;
cin>>n;
bin[]=;
for (i=;i<=;i++)
bin[i]=bin[i-]*;
prework();
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
id[a[i]]=i;
}
for (i=;i<=n-;i++)
{
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
}
dfs(,);
for (i=;i<=n;i++)
solve(i);
ans=;
for (i=;i<=n;i++)
ans=(ans+1ll*g[i]*h[i]%Mod)%Mod;
ans=1ll*ans*qpow(n-,Mod-)%Mod*qpow(n,Mod-)%Mod;
cout<<(ans+Mod)%Mod;
}

$\varphi(a_i*a_j)=\frac{\varphi(a_i)\varphi(a_j)gcd(a_i,a_j)}{\varphi(gcd(a_i,a_j))}$
$\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$f(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$g(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[d|gcd(a_i,a_j)]$
$g(d)=\sum_{d|x}^{n}f(x)$
$f(d)=\sum_{d|x}^{n}\mu(\frac{x}{d})g(x)$
$f(d)=\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
$ans=\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
令$T=id$
$ans=\sum_{T=1}^{n}g(T)\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
令$h(T)=\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
对于g(d)有
$g(d)=\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)(dep_i+dep_j-2*dep_lca)$
$g(d)=\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1 且d|a_j}^{n}\varphi(a_j)-2*\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)*dep_lca$
$\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1且d|a_j}^{n}\varphi(a_j)=2*\sum_{i=1且d|a_i}^{n}\varphi(a_i)*dep_i*Sum$

codeforces 809E Surprise me!的更多相关文章

  1. Codeforces 809E Surprise me! [莫比乌斯反演]

    洛谷 Codeforces 非常套路的一道题,很适合我在陷入低谷时提升信心-- 思路 显然我们需要大力推式子. 设\(p_{a_i}=i\),则有 \[ \begin{align*} n(n-1)an ...

  2. Codeforces 809E - Surprise me!(虚树+莫比乌斯反演)

    Codeforces 题目传送门 & 洛谷题目传送门 1A,就 nm 爽( 首先此题一个很棘手的地方在于贡献的计算式中涉及 \(\varphi(a_ia_j)\),而这东西与 \(i,j\) ...

  3. Codeforces.809E.Surprise me!(莫比乌斯反演 虚树)

    题目链接 \(Description\) 给定一棵树,求\[\frac{1}{n(n-1)/2}\times\sum_{i\in[1,n],j\in[1,n],i\neq j}\varphi(a_i\ ...

  4. 【Codeforces 809E】Surprise me!(莫比乌斯反演 & 虚树)

    Description 给定一颗 \(n\) 个顶点的树,顶点 \(i\) 的权值为 \(a_i\).求: \[\frac{1}{n(n-1)}\sum_{i=1}^n\sum_{j=1}^n\var ...

  5. Codeforces Round #415 (Div. 1) (CDE)

    1. CF 809C Find a car 大意: 给定一个$1e9\times 1e9$的矩阵$a$, $a_{i,j}$为它正上方和正左方未出现过的最小数, 每个询问求一个矩形内的和. 可以发现$ ...

  6. Codeforces Round #277.5 (Div. 2)

    题目链接:http://codeforces.com/contest/489 A:SwapSort In this problem your goal is to sort an array cons ...

  7. Codeforces Beta Round #51 B. Smallest number dfs

    B. Smallest number Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55/pro ...

  8. 【CF809E】Surprise me!(动态规划,虚树,莫比乌斯反演)

    [CF809E]Surprise me!(动态规划,虚树,莫比乌斯反演) 题面 洛谷 CodeForces 翻译: 给定一棵\(n\)个节点的树,每个点有一个权值\(a[i]\),保证\(a[i]\) ...

  9. Codeforces 915 E Physical Education Lessons

    题目描述 This year Alex has finished school, and now he is a first-year student of Berland State Univers ...

随机推荐

  1. 关于hadoop集群下Datanode和Namenode无法访问的解决方案

    HDFS架构 HDFS也是按照Master和Slave的结构,分namenode,secondarynamenode,datanode这几个角色. Namenode:是maseter节点,是大领导.管 ...

  2. Beta总结

    45°炸 031502601 蔡鸿杰 031502604 陈甘霖 031502632 伍晨薇 一.写在Beta项目前 Beta 凡 事 预 则 立 二.GitHub传送门 Beta冲刺重要版本 三.用 ...

  3. Alpha第七天

    Alpha第七天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...

  4. xapp1151_Param_CAM模块安装

    xapp1151_Param_CAM模块安装 所需生成模块 TCAM CAM 下载链接 赛灵思技术支持网站:http://www.xilinx.com/support.html 并在网页中搜索xapp ...

  5. git中级技能

    中级技能(上)               一.实验说明 从本节开始,我们会介绍一些中级和高级的用法,这些用法很少用到,前面三节的内容已经满足了日常工作需要,从本节开始的内容可以简单了解,需要的时候再 ...

  6. bzoj千题计划108:bzoj1018: [SHOI2008]堵塞的交通traffic

    http://www.lydsy.com/JudgeOnline/problem.php?id=1018 关键点在于只有两行 所以一个2*m矩形连通情况只有6种 编号即对应代码中的a数组 线段树维护 ...

  7. JAVA类的方法调用和变量(全套)

    一.类的分类: 1.普通类 2.抽象类(含有抽象方法的类) 3.静态类(不需要实例化,就可以使用的类) 二.方法的分类: 1.私有方法(只有类的内部才可以访问的方法) 2.保护方法(只有类的内部和该该 ...

  8. GIT入门笔记(13)- GUI GIT

  9. Python基础数据类型之集合以及其他和深浅copy

    一.基础数据类型汇总补充 list  在循环一个列表时,最好不要删除列表中的元素,这样会使索引发生改变,从而报错(可以从后向前循环删除,这样不会改变未删元素的索引). 错误示范: lis = [,,, ...

  10. DMO节点内部插入的常用方法与区别

    1.DOM内部插入append()与appendTo() 动态创建的元素是不够的,它只是临时存放在内存中,最终我们需要放到页面文档并呈现出来.那么问题来了,怎么放到文档上? 这里就涉及到一个位置关系, ...