Tired of boring dates, Leha and Noora decided to play a game.

Leha found a tree with n vertices numbered from 1 to n. We remind you that tree is an undirected graph without cycles. Each vertex v of a tree has a number av written on it. Quite by accident it turned out that all values written on vertices are distinct and are natural numbers between 1 and n.

The game goes in the following way. Noora chooses some vertex u of a tree uniformly at random and passes a move to Leha. Leha, in his turn, chooses (also uniformly at random) some vertex v from remaining vertices of a tree (v ≠ u). As you could guess there are n(n - 1) variants of choosing vertices by players. After that players calculate the value of a function f(u, v) = φ(au·av) · d(u, v) of the chosen vertices where φ(x) is Euler's totient function and d(x, y) is the shortest distance between vertices x and y in a tree.

Soon the game became boring for Noora, so Leha decided to defuse the situation and calculate expected value of function f over all variants of choosing vertices u and v, hoping of at least somehow surprise the girl.

Leha asks for your help in calculating this expected value. Let this value be representable in the form of an irreducible fraction . To further surprise Noora, he wants to name her the value .

Help Leha!

Input

The first line of input contains one integer number n (2 ≤ n ≤ 2·105)  — number of vertices in a tree.

The second line contains n different numbers a1, a2, ..., an (1 ≤ ai ≤ n) separated by spaces, denoting the values written on a tree vertices.

Each of the next n - 1 lines contains two integer numbers x and y (1 ≤ x, y ≤ n), describing the next edge of a tree. It is guaranteed that this set of edges describes a tree.

Output

In a single line print a number equal to P·Q - 1 modulo 109 + 7.

Examples
Input

Copy
3
1 2 3
1 2
2 3
Output
333333338
Input

Copy
5
5 4 3 1 2
3 5
1 2
4 3
2 5
Output
8
Note

Euler's totient function φ(n) is the number of such i that 1 ≤ i ≤ n,and gcd(i, n) = 1, where gcd(x, y) is the greatest common divisor of numbers x and y.

There are 6 variants of choosing vertices by Leha and Noora in the first testcase:

  • u = 1, v = 2, f(1, 2) = φ(a1·a2d(1, 2) = φ(1·2)·1 = φ(2) = 1
  • u = 2, v = 1, f(2, 1) = f(1, 2) = 1
  • u = 1, v = 3, f(1, 3) = φ(a1·a3d(1, 3) = φ(1·3)·2 = 2φ(3) = 4
  • u = 3, v = 1, f(3, 1) = f(1, 3) = 4
  • u = 2, v = 3, f(2, 3) = φ(a2·a3d(2, 3) = φ(2·3)·1 = φ(6) = 2
  • u = 3, v = 2, f(3, 2) = f(2, 3) = 2

Expected value equals to . The value Leha wants to name Noora is 7·3 - 1 = 7·333333336 = 333333338 .

In the second testcase expected value equals to , so Leha will have to surprise Hoora by number 8·1 - 1 = 8 .

$\varphi(a_i*a_j)=\frac{\varphi(a_i)\varphi(a_j)gcd(a_i,a_j)}{\varphi(gcd(a_i,a_j))}$
$\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$f(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$g(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[d|gcd(a_i,a_j)]$
$g(d)=\sum_{d|x}^{n}f(x)$
$f(d)=\sum_{d|x}^{n}\mu(\frac{x}{d})g(x)$
$f(d)=\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
$ans=\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
令$T=id$
$ans=\sum_{T=1}^{n}g(T)\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
令$h(T)=\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
对于g(d)有
$g(d)=\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)(dep_i+dep_j-2*dep_lca)$
$g(d)=\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1 且d|a_j}^{n}\varphi(a_j)-2*\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)*dep_lca$
$\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1且d|a_j}^{n}\varphi(a_j)=2*\sum_{i=1且d|a_i}^{n}\varphi(a_i)*dep_i*Sum$

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
struct Node
{
int next,to;
}edge[],edge2[];
int num,head[],head2[],mu[],phi[],vis[],inv[],Mod=1e9+;
int n,tot,prime[],h[],dep[],fa[][],dfn[],cnt,size[],st[];
int bin[],ed[],flag[],ans,a[],sum,f[],l[],b[],top,g[];
int id[];
bool cmp(int a,int b)
{
return dfn[a]<dfn[b];
}
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
void add2(int u,int v)
{
num++;
edge2[num].next=head2[u];
head2[u]=num;
edge2[num].to=v;
}
int qpow(int x,int y)
{
int res=;
while (y)
{
if (y&) res=1ll*res*x%Mod;
x=1ll*x*x%Mod;
y>>=;
}
return res;
}
void prework()
{int i,j;
mu[]=phi[]=;
inv[]=;
for (i=;i<=n;i++)
inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
for (i=;i<=n;i++)
{
if (vis[i]==)
{
++tot;
prime[tot]=i;
mu[i]=-;
phi[i]=i-;
}
for (j=;j<=tot;j++)
{
if (1ll*i*prime[j]>n) break;
vis[i*prime[j]]=;
if (i%prime[j]==)
{
phi[i*prime[j]]=1ll*phi[i]*prime[j];
break;
}
else
{
phi[i*prime[j]]=1ll*phi[i]*(prime[j]-);
mu[i*prime[j]]=-mu[i];
}
}
}
for (i=;i<=n;i++)
{
for (j=;j<=n&&1ll*i*j<=n;j++)
{
h[i*j]+=1ll*mu[j]*i%Mod*inv[phi[i]]%Mod;
h[i*j]%=Mod;
}
}
}
int lca(int x,int y)
{int i;
if (dep[x]<dep[y]) swap(x,y);
for (i=;i>=;i--)
if (dep[fa[x][i]]>=dep[y])
x=fa[x][i];
if (x==y) return x;
for (i=;i>=;i--)
{
if (fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
}
int get_dis(int x,int y)
{
return dep[x]+dep[y]-*dep[lca(x,y)];
}
void dfs(int x,int pa)
{int i;
dep[x]=dep[pa]+;
dfn[x]=++cnt;
size[x]=;
for (i=;bin[i]<=dep[x];i++)
fa[x][i]=fa[fa[x][i-]][i-];
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==pa) continue;
fa[v][]=x;
dfs(v,x);
size[x]+=size[v];
}
ed[x]=cnt;
}
int DP(int x)
{
int s1=,s2=;
if (flag[x])
{
ans+=2ll*phi[a[x]]%Mod*sum%Mod*dep[x]%Mod;
ans%=Mod;
f[x]=phi[a[x]];
s1=1ll*f[x]*f[x]%Mod*dep[x]%Mod;
}
else f[x]=;
for (int i=head2[x];i;i=edge2[i].next)
{
int v=edge2[i].to;
DP(v);
s2=(s2+1ll*f[x]*f[v]%Mod*dep[x]%Mod)%Mod;
f[x]=(f[x]+f[v])%Mod;
}
ans=((ans-4ll*s2%Mod)%Mod-2ll*s1%Mod)%Mod;
ans=(ans+Mod)%Mod;
}
void solve(int x)
{int i,Lca;
int tot=;sum=;
for (i=x;i<=n;i+=x)
flag[l[++tot]=id[i]]=,b[tot]=l[tot],sum=(sum+phi[i])%Mod;
sort(l+,l+tot+,cmp);
Lca=l[];
for (i=;i<=tot;i++)
if (ed[l[i-]]<dfn[l[i]]) l[++tot]=lca(l[i],l[i-]),Lca=lca(Lca,l[i]);
l[++tot]=Lca;
sort(l+,l+tot+,cmp);
tot=unique(l+,l+tot+)-l-;
top=;num=;ans=;
st[++top]=Lca;
for (i=;i<=tot;i++)
{
while (top&&ed[st[top]]<dfn[l[i]]) top--;
add2(st[top],l[i]);
//cout<<x<<' '<<st[top]<<' '<<l[i]<<endl;
st[++top]=l[i];
}
DP(Lca);
g[x]=ans%Mod;
for (i=;i<=tot;i++) flag[l[i]]=,head2[l[i]]=;
}
int main()
{int i,j,u,v;
cin>>n;
bin[]=;
for (i=;i<=;i++)
bin[i]=bin[i-]*;
prework();
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
id[a[i]]=i;
}
for (i=;i<=n-;i++)
{
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
}
dfs(,);
for (i=;i<=n;i++)
solve(i);
ans=;
for (i=;i<=n;i++)
ans=(ans+1ll*g[i]*h[i]%Mod)%Mod;
ans=1ll*ans*qpow(n-,Mod-)%Mod*qpow(n,Mod-)%Mod;
cout<<(ans+Mod)%Mod;
}

$\varphi(a_i*a_j)=\frac{\varphi(a_i)\varphi(a_j)gcd(a_i,a_j)}{\varphi(gcd(a_i,a_j))}$
$\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$f(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[gcd(a_i,a_j)=d]$
$g(d)=\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_i)\varphi(a_j)dist(i,j)[d|gcd(a_i,a_j)]$
$g(d)=\sum_{d|x}^{n}f(x)$
$f(d)=\sum_{d|x}^{n}\mu(\frac{x}{d})g(x)$
$f(d)=\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
$ans=\sum_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{i=1}^{\frac{n}{d}}\mu(i)g(id)$
令$T=id$
$ans=\sum_{T=1}^{n}g(T)\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
令$h(T)=\sum_{d|T}\mu(\frac{T}{d})\frac{d}{\varphi(d)}$
对于g(d)有
$g(d)=\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)(dep_i+dep_j-2*dep_lca)$
$g(d)=\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1 且d|a_j}^{n}\varphi(a_j)-2*\sum_{i=1且d|a_i}^{n}\sum_{j=1 且d|a_j}^{n}\varphi(a_i)\varphi(a_j)*dep_lca$
$\sum_{i=1且d|a_i}^{n}\varphi(a_i)*2*dep_i\sum_{j=1且d|a_j}^{n}\varphi(a_j)=2*\sum_{i=1且d|a_i}^{n}\varphi(a_i)*dep_i*Sum$

codeforces 809E Surprise me!的更多相关文章

  1. Codeforces 809E Surprise me! [莫比乌斯反演]

    洛谷 Codeforces 非常套路的一道题,很适合我在陷入低谷时提升信心-- 思路 显然我们需要大力推式子. 设\(p_{a_i}=i\),则有 \[ \begin{align*} n(n-1)an ...

  2. Codeforces 809E - Surprise me!(虚树+莫比乌斯反演)

    Codeforces 题目传送门 & 洛谷题目传送门 1A,就 nm 爽( 首先此题一个很棘手的地方在于贡献的计算式中涉及 \(\varphi(a_ia_j)\),而这东西与 \(i,j\) ...

  3. Codeforces.809E.Surprise me!(莫比乌斯反演 虚树)

    题目链接 \(Description\) 给定一棵树,求\[\frac{1}{n(n-1)/2}\times\sum_{i\in[1,n],j\in[1,n],i\neq j}\varphi(a_i\ ...

  4. 【Codeforces 809E】Surprise me!(莫比乌斯反演 & 虚树)

    Description 给定一颗 \(n\) 个顶点的树,顶点 \(i\) 的权值为 \(a_i\).求: \[\frac{1}{n(n-1)}\sum_{i=1}^n\sum_{j=1}^n\var ...

  5. Codeforces Round #415 (Div. 1) (CDE)

    1. CF 809C Find a car 大意: 给定一个$1e9\times 1e9$的矩阵$a$, $a_{i,j}$为它正上方和正左方未出现过的最小数, 每个询问求一个矩形内的和. 可以发现$ ...

  6. Codeforces Round #277.5 (Div. 2)

    题目链接:http://codeforces.com/contest/489 A:SwapSort In this problem your goal is to sort an array cons ...

  7. Codeforces Beta Round #51 B. Smallest number dfs

    B. Smallest number Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55/pro ...

  8. 【CF809E】Surprise me!(动态规划,虚树,莫比乌斯反演)

    [CF809E]Surprise me!(动态规划,虚树,莫比乌斯反演) 题面 洛谷 CodeForces 翻译: 给定一棵\(n\)个节点的树,每个点有一个权值\(a[i]\),保证\(a[i]\) ...

  9. Codeforces 915 E Physical Education Lessons

    题目描述 This year Alex has finished school, and now he is a first-year student of Berland State Univers ...

随机推荐

  1. python 面向对象的程序设计

    一:什么是编程范式? 编程是程序员用特定的语法 + 数据结构 + 算法组成的代码来告诉计算机如何执行任务的过程. 如果把编程的过程比喻为练习武功,那么编程范式指的就是武林中的各种流派,而在编程的世界里 ...

  2. CoreAnimation注意事项

    最近调查的一个bug和内存泄露都和CoreAnimation有关,因此谈一下使用CoreAnimation需要注意的几个问题 CAAnimation的delegate属性是retain的,这个设计确实 ...

  3. hibernate懒加载导致jackjson解析json时StackOverFlow

    @JsonIgnore @JsonFilter @JsonBackReference @JsonManagedReference @JsonIgnoreProperties jackson中的@Jso ...

  4. JAVA_SE基础——53.什么是异常?

    尽管人人都希望自己的身体健康,处理事情都能顺利进行, 但是在实际生活中总会遇到各种状况,比如,感冒发烧,电脑突然蓝屏死机等..程序也一样,程序在运行过程中,也会发生各种非正常状况,比如程序运行时磁盘不 ...

  5. 关于python爬虫经常要用到的一些Re.正则表达式

    转载:https://blog.csdn.net/skyeyesxy/article/details/50837984 1.正则表达式的常用符号与方法 常用符号:点号,星号,问号与括号(小括号) (. ...

  6. 阿里云CentOS部署小笔记

    快毕业了,我用近两周的时间完成了一个nodeJs+Vue-Cli+Mysql的毕业设计,到了部署的时候了. 然而,博主使用Linux的经验有限得很,所以只能自己慢慢地填坑了. 一.准备工作 1)阿里云 ...

  7. 使用cxf创建webservice 出现timeOut的问题,设置spring超时时间

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  8. Jquery blokckUI 快速入门

    $("#btnSubmit").click(function() { $.blockUI({ message : $("#loginForm"), css : ...

  9. 新概念英语(1-125)Tea for two

    Does Susan have tea by herself?A:Can't you come in and have tea now,Peter? Not yet.B:I must water th ...

  10. 访问远程的docker

        docker version vim /etc/default/docker DOCKER_OPTS="  -Label name=dockerserver2" docke ...