Description

小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题:

给定正整数 N 和 M,要求计算 Concatenate (1 .. N) Mod M 的值,其中 Concatenate (1 ..N)是将所有正整数 1, 2, …, N 顺序连接起来得到的数。例如,N = 13, Concatenate (1 .. N)=12345678910111213.小C 想了大半天终于意识到这是一道不可能手算出来的题目,于是他只好向你求助,希望你能编写一个程序帮他解决这个问题。

Input

从文件input.txt中读入数据,输入文件只有一行且为用空格隔开的两个正整数N和M,其中30%的数据满足1≤N≤1000000;100%的数据满足1≤N≤1018且1≤M≤109.

Output

输出文件 output.txt 仅包含一个非负整数,表示 Concatenate (1 .. N) Mod M 的值。

Sample Input

13 13

Sample Output

4

题解

首先写出递推关系式:令 $s_i$ 为前 i 个数连接得到的数,$c(i)$ 表示 $i$ 的位数,有

$s_i=10^{c(i)}×s_{i−1}+i$

$c(i)$ 随 $i$ 变化,无法在转移矩阵 $T$ 中表示。如果 $c(i)$ 固定,就可以矩阵优化了!

考虑位数随着 $i$ 的变化最多只会变化 $18$ 次,因此可以按位数分段进行矩阵快速幂。
枚举位数,那么有

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAcMAAAEqCAIAAADmr6zDAAAAA3NCSVQICAjb4U/gAAAgAElEQVR4Xu2defyXU/r/RbKFFlJJJSJS0qqislMGM2qylSVkmCkJTUrFkAZDjeVB2bK0DFG2RNpkqYShspTSQspSUilGfk/OfO/fez7v/d7e577v1/uPHp/u+5zrXNfrnPfrfc65rnOdcr/88st2+ggBISAEhIAHBLb3UFdVhYAQEAJC4FcExKQaB0JACAgBrwiISb0iqPpCQAgIATGpxoAQEAJCwCsCYlKvCKq+EBACQkBMqjEgBISAEPCKgJjUK4KqLwSEgBAQk2oMCAEhIAS8IiAm9Yqg6gsBISAExKQaA0JACAgBrwiISb0iqPpCQAgIATGpxoAQEAJCwCsCYlKvCKq+EBACQkBMqjEgBISAEPCKgJjUK4KqLwSEgBAQk2oMCAEhIAS8IiAm9Yqg6gsBISAExKQaA0JACAgBrwiISb0iqPpCQAgIATGpxoAQEAJCwCsCYlKvCKq+EBACQkBMqjEgBISAEPCKgJjUK4KqLwSEgBAQk2oMCAEhIAS8IiAm9Yqg6gsBISAExKQaA0JACAgBrwiISb0iqPpCQAgIATGpxoAQEAJCwCsCYlKvCKq+EBACQkBMmsQxsH79+ilTpmzZsiWJxifb5tmzZ3/++efJxiAQ68WkgcBqs9AvvviiVatWvXv33rp1q816SrcgEBg1atTBBx/8+uuvByE8yTLL/fLLL0m2P2m2r1q16phjjtm0adMbb7xRt27dpJkve3/88cdTTz31zTfffPnll1u3bi1A/EJATOoXkhGQs27dupYtWzInhUYPP/zwCGgsFQNA4Pvvvz/66KOXLl0KnzZs2DCAFpIoUqv7pPT6tm3bunfvvmTJkhEjRohGk9LrmezcfffdH3/8cfZ2zjzzTFg1UxE9KxoBMWnRkEW0wi233PL888937ty5R48eETVBavuFwGGHHTZkyJCPP/6YwaD9PV9Q1ereFxhtF8I6rm3btpUqVVq8eHHVqlVtV1f6BY/Af/7znyOPPHL+/PkPPvjgRRddFHyDMW9BTBrzDsY81vU4699++23W9b169Yq/wbKwMAQWLFjQtGnTPffck8lplSpVCqukUpkR0Oo+My5xevroo49Co8S+/OlPf4qTXbLFIwKs8S+++OKvv/564MCBHkWpuuakMR8DuBQOOuigL7/8EifDueeeG3NrZV6RCKxcufKAAw5gpb9w4cJDDjmkyNoq/v8R0Jw05qPh3nvvhUarV6/epUuXmJsq84pHYL/99jvvvPNwOt1+++3F11YNMWkyxgA7pCNHjsTWyy+/vEKFCskwWlYWh0DPnj2p8NhjjxFoXFxNlU5BQHPSOA+HqVOnEoBdrly5Sy65JM52yjYPCHBYo1GjRj/99NM999zjQUzSq4pJ4zwC7r//fswj/onVfZztlG0eEOCH9vTTT0fAE088odhS10CKSYuGjpPLnF5n89HyYbd69epJkyZh3hlnnFG0kaqQJAROOOEEzF2+fDlxx0my209bxaSFookTfPjw4W3atNl1113Zp69Ro8Zuu+3GsWUiNHGAFiolxHKcaPr5559pUEwaIuqRbIoQfQYzqo8dOzaSBligtJi0oE6YOHHigQce2KdPH360DT1R7Ycffli0aNFdd91FHMnDDz9ckKAQC5Hsh9bq1KmDeiE2q6aihwDeyA4dOqD3Sy+9FD3t7dBYTJq/H9g/+v3vf7927drGjRvz9yeffML2/DfffEOSxz//+c877rgj/yXIOb+gEEtA97ibaLBFixYhNht4U0D93m8feiHwxgprYPz48Rx8KKxsGKXc6WMW+CS4YecqDC3j1wabffrkQIA18g477EC/X3fdddBTeskPPviA5TPxRumvSvgErjFj9dZbby2hGr437aQoPvvss30XXqzAZcuWdevWDZw5I1Rs3SDKe9HH+THgBEcQusVeZvn4/Tb4aBFnP4jEhEA5HXTTTTfh5UwXzmz06aefzvgqvXBoT/7973+btmI2J507d66xi9id0MBMbYi1yG233UboJblgiDD79ttveQtNlEQZGvVLHzavjAnkrtVZOBe9qdV9LtCeffbZFStWUIIJaQ6uzPEql/Qg373//vtGfMxS+bI+IGSHz7HHHlssfuwMEBDm8RYjflZ32WUXfp+GDh2Kp5H0H8Wq4W95v/TBkL333hvdSGvir4YJkaY5aa6Ohkl5Xb58+cgdSTZzUr7ze+21Vy4Lo/buL7993GnN9I0JF0vgfffd150EalWrVm3w4MGuq/te0Ud9mJZ+9dVXHMBnim3h5MB36PwVqDlpLjw3b97Ma9b4LOVylbPvHQtPlKpdu7a+EvZ1jqUa1a9fH834vcG5aqmKFqslJs3VOaRGNq85bUnysVxFbXrHnMKsYWFSm/SSLlYj4GyV2hkfbTV2220nJs3VQcYzS4lZs2ZxNvnqq6+ePn06U9RcdSx4hxvE3MBcq1atYtXBunHjxpFEnQ1WqnPj08knn3zHHXesWbOmWFG+lydGB88yH46Z+S5cAtkoMCBwfk9oFIuAmDQXYlzBSMSoM7z+8Y9/4OjgDDv5cYlhLqHHNpfS223nJPXZY489cpcs85Y9xGbNmhFgxEEDDh0wscVzNWXKlL59++KrKbm93JPBbxvKEMNblF0qXAgC5pgTJTlnXEh5lUlFQB6nPOOBE6L4NP/+97+bPVNKs5HEV5rPKaec8tRTT3F4NLcIQp0p6foSx5133vnJJ59kRpy7ldS33333nflvXt1Sa2Fgp06dPvzwQ34tbrjhBqK7CJKFTGfOnEmWIOi15FuuJgSK+KeSa1J4X0SopMOkEdrIsgdeMWmeviDsZtCgQazrmYQ+88wzkydPhklNHf6+7LLLuNsjtwiImGnUxo0bcxfL9hYm5cRntrcZn3OM1TzHd5+xQMaHLOqhUZZ45D2pWLGiKcP1PpA4ZjoyM9YN4SG0Pm/ePBriTqoQmktgEw6TbtmyJYHmezRZTFoQgEzu/vDbh/C9OXPmDBgwYMaMGdRkz47bbuvVq5dDyk477XTBBRfkKOD7K3dMyg8DmjRp0sShUUcx4sC4JN13PYsSyK1tZl5fqpj8orSNYmExqZde0z5pcegxRSUdFEfajzvuOGqydThhwoTiRARf2plTMJ8tvDUC1ynML8QDDzywfv36bBXJ4YJYPs7cPFtJf587p5tidmrLX5S8SHOYtOTrDy9WlKqu5qRukIdPOWr96quvUtlCR6dz0UhRYQZdu3ZlXY9bnJAvbiFt3749WS1IKcClpKkYMSUnMKBu3bpVq1Z1g53bOoZJud2vcuXK2WQQCMldGtm2pE08w5VXXukEt5WRw88D2+JOMFC2VuL63BktLEHiamNwdgkyl9iSotTUtPAQkbMSd7xkhRh51llnkcbizjvvZKLNl4rfCT6c5+FJ6vXOMCweMCdiphDJvpRx3E05pLEvjKMsG5Nu2rRp9uzZ+++/f7YzTjBpyTcxclgX9Ct3m0JBaxUV+WJSlz3lpAghPCi3CDzpZD/J9vXOXZe3sMO1115LYum8JZ0CDh3AHYXXwiFOmNf555/PGVniZ1nms95nHkcOF6JK2dMwoo747VO4WF9Ksl9hAM+9SYrhf/vb37K1yOqBjYvevXsfddRR2cok+bmY1Evvi0kzoAeD5I5YZNZGgmdqcsAuL5Oa20pcMykTpWL3rdwxqQGCHKx8+HvdunUEP11//fX8DbcaJsVww87pXqkMOPr3CBo127hy3PsHallJzjArKniurJSk/l9MmqHnufub4GT+zXaz8Y033siUjUkcK1+TvTSDlP97RBRUyJc6eGFSxxC2I9kLJmz2s88+c2LyOUdISBZxUU6uqRyG+/jKLO35eWN27KNYiUpFwGHSffbZR8gUi4B892URI26RNSBTTi63IfC+jNOGQ5MccCLyiWojRowglL1sfQv+7xxtKnAizKw5Y0kcOCQHwiBOFhizDKOFPzE07RKhRUiZBQDHUwXnQHDNmjXjaWGQVmlOWhZdxpNx8r777rtdunQhNL1169b4c4kkJXUjX2njxoFMXad3K9uk3/+HSfEIwYPcFlmIbBbv3OtHws3OnTs7y3aq9+jRg7X8oYceipfJyCnE7VNIi8WWKRWD59XT/NAWFSORV6aXAl70cRKXZPPIeVEs/nVZuOlTBgEmaKR2Nolv00cAC0wum7McNJMImbiCQvTs2LGjMZM9Waw78cQTWb+bnQ1IGYe+I6Rdu3aUZNeyELF+lTF56WmX42ReZJrj5K+99poXIaYus3jCaZ1NG5IV8CvLMbaM99N4by6vBF/0Yd5ghgHjP2+LKlAGgV9jy/XJiACjk2M/zD3POeccVvEECbFvSBiNbVc2ZVQeD7X5VuA4ylgg9eGnn36Kg75MuhN2gUlN/9FHHzklme8QvI07AudPXpk+FjCXpGJOqjIu5PvFpCaCnU1b/mDJws8VCecJsTA75pwMdqGblyp+6cN2FiATJeZFmcTW1eo+fdL53yd8VUgoxydrCYtfOHedkomuefPmuTXltCtuerZ9ud2PlCWs6GEHNiXLxN6THYpXTEtDjtzmgADfz9wmhPmWOTJjI2MWFX5l+YSpDG35og8Im+zgJnIjZBNi0JyYNAadmMEEh0nJ9p+XSU19+DF3rGipNkkzmOfq0fbb/+pfNf+6EvDfStkiOoxw7/KL1c0XfcjEaFLli0mLxd+Ul+/eHW621yJPs5k0cS2PX7pa6/Yp0EAm2pdeemmDBg0KLJ+oYs4tzUpr4K7fxaTucLO9FiGluEHQctq0aX7pGoM56f3338/Opl+AxEmOYVK2ep04jThZF4ItYtIQQC5NE2aHl4QjORI7Fa4ZsV/sohKz7SQcKLyuStqPACm+UBKnU7H3LNhvWjgaiknDwbkErZjYJhwg3D3lvXlc9vjuObqe0dPiXb4klBCBDRs2kGkBBU466aQSqhHppsWkke6+XMpzEskk23/llVdyldO7xCPAfRBEtvEb6VwBmXhIigZATFo0ZFGpgBPZ5Oo35wiiorb0DB8BDrnRKNtBpJ0Nv/V4tCgmjUc/ZraCFHm8IPCegz2ZS+hp4hHgRJNhUpJkJx4M9wCISd1jZ39Nzqtw9xR6knjUfm2lYUkQGD16NGRK1hI70/GUBBMXjYpJXYAWpSokEEDd55577pNPPomS3tI1FARwSN599900RTqekI+uhWJfeI2IScPDuiQtEVVKTjzOAnIYtCQKqFGbEXjxxRe5tBXPpJOowWZtbdatnFUnmm1GKrq6cV6eDE8cFV+xYoWFt05FF9ioa05YGwOD4TFu3DjuQ4y6OaXVX3PS0uIfRuskGCVBERnR+/TpE0Z7aiMiCJDRHBrlXpk//vGPEVHZXjU1J7W3b3zUjBxOpBxdtmzZxIkTyZXno2SJiigC5Csx97ByCk5ZS7x3ouak3jGMgARSWE6YMIFEzkS6kKI4AhpLxSARYE/voosu4moZsimKRn1BWkzqC4wREELGvFGjRnG3yhVXXKHN8Qh0WJAq3nvvvS+88MKFF14InwbZToJk72Aud0uQxQk2ldkHV1SRD4lD9Hkvl04wTjE3nTwMnAple3TMmDG5byOPORC+mqdMz77Cab0wrr0jXUW/fv3I6mROQFmvshT0EwESep1xxhnkZCD+Sffa+4isPE4+ghkNUSzt4VMusn/rrbe4gjQaSktLnxDgIFOlSpVYlziXyPokOOlixKRJHwGyXwgIAe8IyOPkHUNJEAJCIOkIiEmTPgJkvxAQAt4REJN6x1AShIAQSDoCYtKkjwDZLwSEgHcExKTeMZQEISAEko6AmDTpI0D2CwEh4B0BMal3DCVBCAiBpCMgJk36CJD9QkAIeEdATOodQ0kQAkIg6QiISZM+AmS/EBAC3hEQk3rHUBKEgBBIOgJi0qSPANkvBISAdwTEpN4xlAQhIASSjoCYNOkjQPYLASHgHQExqXcMJUEICIGkIyAmTfoIkP1CQAh4R0BM6h1DSRACQiDpCIhJkz4CZL8QEALeERCTesdQEoSAEEg6AmLSpI8A2S8EhIB3BMSk3jGUBCEgBJKOgJg06SNA9gsBIeAdATGpdwwlQQgIgaQjICZN+giQ/UJACHhHQEzqHUNJEAJCIOkIiEmTPgJkvxAQAt4REJN6x1AShIAQSDoCYtKkjwDZLwSEgHcExKTeMZQEISAEko6AmDTpI0D2CwEh4B0BMal3DCVBCAiBpCMgJk36CJD9QkAIeEdATOodQ0kQAkIg6QiISZM+AmS/EBAC3hEQk3rHUBKEgBBIOgJi0qSPANkvBISAdwTEpN4xlAQhIASSjoCYNOkjQPYLASHgHQExqXcMJUEICIGkIyAmTfoIkP1CQAh4R0BM6h1DSRACQiDpCIhJkz4CZL8QEALeERCTesdQEoSAEEg6AmLSpI8A2S8EhIB3BMSk3jGUBCEgBJKOgJg06SNA9gsBIeAdATGpdwwlQQgIgaQjICZN+giQ/UJACHhHQEzqHUNJEAJCIOkIiEmTPgJkvxAQAt4REJN6x1AShIAQSDoCYtKkjwDZLwSEgHcExKTeMSy9hK+//nrmzJkbN24svSrSIKYI/PLLL7Nnz162bFlM7fNqlpjUK4Ilr//DDz+ccMIJJ5988tq1a0uujBSIKwL/+c9/LrvsssMPP/z999+Pq41e7BKTekGv9HWZKfTs2fO9994bMmRIvXr1Sq9QJg22bNmybt26TG9Cevb999+jQ0iNxbSZHXfc8f777wfJrl27btq0KaZWujdLTOoeOxtq3nPPPY899hgzhauuusoGfdJ1WL16dYcOHZ5//vn0V6E9mTVrFjqgSWgtxrKhtm3b8rP90UcfWTvYSgk7kxp9IooAU1FmCuXKlZszZ46dJqxZs+bAAw8cPHhwOOrRHHSZsa1hw4YxZ//yyy8zvtXDAhFgbVG9enUIa8KECQVWSUix7RJiZ/zM3Lp1K1NRxnTv3r3ttO7nn38+6qijfve7323bti2jhm+88cZOv33wmKUXWL9+PUvy9OcZn3z33XcPPPDAXnvtdc4552QsgA5nn312y5Ytf/zxx4wF9LBABP71r38x6ipXrrxixYoCqyShmJg0qr18/fXXM6D3228/tq7stOHxxx/fddddly9fnk29O++8ExPq1q2bscAf/vCH6667LuOr1IfXXHNNtWrVdt9994MOOghpZ555ZrYqX3zxBcWGDh2arYCeF4IAv0mdOnUC6nbt2vFjWUiVJJQRk0ayl995550ddtiB0Txx4kQ7DcApUatWrWuvvTaHeljx5JNPEr+Vscxxxx13xRVXZHyV+nDx4sUffPABs1f2i3MzKbVuvPHG3XbbLeMUOG9DKuAg8Nlnn/EbCdoPPfSQYDEIyOPEeIjYh5678sormQ40a9bstNNOs1N71tqrVq3Cz5tDvSOOOKJz585MbXKUyfuKfdjDDjuMLYK8JSlg/M733XdfIYVVJhsCderUufzyy3nbv39/lkTZiiXquZg0et39zDPP4IxGbxb4uJtKbsBXX3313HPPsZafPn06fxt9nn322QMOOACuzKYevwccJQj5NAE7ANBuaQMJsgESree47/n1wsV38803R0vzgLQtH5BciQ0IARxNLJkR3qhRI5w5BbYyfvx4eK158+Z5y+OQmTx58sKFC2moYcOG7IixHM5WC09uv379mH5Ci6YM3y42N/mavfbaa+eff34Ool+5ciVTG6wIOdKbUwwjRozAnVWpUqVsdgX9vCiQg1bGyC9WpRo1avTo0ePee+9ls/viiy9mZRCOnta2ojmptV2TWTECSD/99FPeDRw4cPvt83cfW1rdu3c/66yzJk2alFliytOnn366du3aL7zwQps2bdimxLcO2T366KMZKy5atKhBgwajR4/G5/Piiy8yTYZSDz30UL6Tb731Fv/uu+++GSuah3PnzuWPVq1a5SgTxCt2b/GZmEl9EPLzyiwK5LzSfCngTiV+0cuXL09HX3311b6oEW0h2jCOEAK4capUqcKAg8I4vZdNczwqTBW7det25JFH4tdmuFNlwIAB2cqb5yNHjqTY8OHDU4sR8sK8Mt3fTRNMcpmuvv3226nl0WrDhg2PPPIIotiOzNEi/EsZGs1WpkCPk1O9EI8ThZ944gna5QcpW7uBPi8K5EA1cYR7UemCCy4ATD5vvvlmONpa24pW92YkRONfyOLbb79FV1bQxnefUW+cUbvsskuLFi0uvPBCzqXUrFnzm2++yVjSeUhsYJ8+fZo2bUp0amrJLl26QD2DBg068cQTcXA5r9gdY2p81113pT7kLVoRaWQyALAAzNEopwl4y5yUWHo2H6DgMoUJnyKlwO23317mOaaxrtx5551zCM/xygSWlyRHQbEg57DCr1ceVfrrX//KogR2o5ueeuopv7SKpBxrOV6KlUEAfmQqyiBjWsomZuH4VK1alVq556TnnXceZW655ZZ0seYbwgzReQXBoQOMli2U9YYbbkDaq6++mi7NPIE3mc8SSfPTTz/h/yGklK2AMp8KFSpQoOzTffetX78+BxbTJRc4J2X2hG4sSNMlBP2kKJCDVsbI966S2axn4UI4Wjg629mK4knt7JcMWuEIMr/VBKBkeJ39UV4mZT0OLSJ83rx56WJwDfGKr4pzpgUi4wknrNILmyc4IigABWcrYLxMxD9lK8DzgFb3xnF/00035Wg6iFfFghyEDmVk+qKSOfJEdxc7LEMwMMwm8rsszLdX/5YcAXMiCDXwIPmrDO4XppnINCvfMsL33ntvnjAop06dal6ZlTiuhmxqmCpmIyJjGeNu4uxmxreBPjRxWux4BNpKuvBiQU6X4PsTX1Q69dRT2c9Bt4cffpjdc9+VjIpAMWk0egpH+csvv4yurG19JyDOGhkUzOy1DCIENpmAIUN/vMXXBFd++OGHZq/TKc/sdenSpfzXbJ4SNpAN3FI57tGHM6P8a1IWZFMviOfFghyEDmVk+qISqxmOVyCZH+MkH3kQk4YwYn1oghBII4UJaY4gTXctcRiJijiLzBo/Xcgee+zBQ8NB/IG3h9gA/sANhe8LTz2nME8//fT9998fNxHP+QPG5xhouijzxMc5KVNjgkOXLFlidgzYgliwYAETz82bN2dsnYkY8QzEsWZ8G9zDYkEOThNHsl8qnXvuuUYmAXOsXULQ3MIm5Lu3sFPKqgRZ4N02T42LoGwJb/83B/5MsFRGSSZOgHxLztu+fftWrFiRdHk4qXgIuXN26NZbb3XmyyeddBKJgQnbSg/sh+M4Kb/PPvuQfiVjc0U9pFFCC5g446EiFxR+D+IB8Mg1adKECK0yongOk5L7nWyERbXivbALkL03mluCXyqR+5XdEn5oAR/MCRrJ3W4s32pOGoFunTZtmmExQppwc/uuMZ4HZOaI809nUsqT9JcAJuaALPNZ2TEl5GiTw5sXXXQRfnnHHZGqMx55dlpJFerL5JpJMVENKABETEU5dgV9I9/Zi0htmh0SSnL4yncM8wp0B3JesV4K+KUSw4OMhUaTMWPGeFEpunXFpBHoOydSj8uaglDXzE1y8Jp5lZ6rgufMK4nNSk8gwol74mMI6U8PFC3QBITnIHdHCGUyap5el4Und7QwgQp/kxRtXYNcIFwuivmokpNJZ9y4cfywuVAm6lXEpLb3IExE6jyjJYFBQahrtkdzfAHMq2KD4YnbZ+KJS9edzqzBOeTqrm7GWqR5x3FnjvRkLBDow4BA9qKzjyqxo2Kk0eMksvGiVUTriklt7zj8NuaEErEmAe1A7bnnnqCQl0mN36lwvDizz/kojk5xDL/wWk5JcjZz/N9FxYxV4NBLLrkE5zKusIwFgn4YEMhe1PZRJRYl3I9glOEUvxetIlpXTGp7xzGTMiq2b98+h1PIixnmG8XkN5vj1azQi2VSVGLRxwl3omRKe086cY6EFnDyqiQ7pKZrggPZddf7q9IxxxxjNJkyZUq2geRaVfsrikmt7iOyFjm/8Mcee2xAujphpIQTpTfBt8LE2OMZT3+b9wnkhRcCr1TeksEVIEkgx8N79eoVXBN5JQcKct7WMxbwVyVnfBJTjBM/Y4sxfqgoKKs7Fwogma5RMaBNUoQ7WUhoi5vOyiCCX8KcgCKuyB1YHrPiu2s0tRbTee9CPEoIGmQX6vmrEtLYgDJerJdeeslcq+VCq4hW0ZzU6o4jQ6jRj+kDAZsB6cp2pHF/Z8yQhA/BtGsDHwWEQAhiLQTZX5XYenJGyIwZM0KA1KomxKRWdUdZZRwmJagoPaynbGm3/yesumPHjtR2jg+mSiKtCf/FUVNIyn23KsS/noUg+66Sk7c7YzBvvPtYTGp1/zpM2rhxY9eKGn9R7rhOk3fZOUmV2pZJtk9kaMawTddaJbCihSD7q5KzbPr8t0+yujjMxFNqqygEnB1SRiRRmUXVpTBnTAmfGjt2rBnQbGNxIJ0b6Ih2yijKHKXnYrvUtyzTmAvjfM9YRQ+LRcBCkH1UKdXRhKe0WHAiXV75Se3tPicgHyqcP39+UYqaU5ucLucPsjLjdifkhdhpc+6TU/Pp0jjcyTl6yg8bNoxjoJy8JIgdBxSnQrlNPr28nrhAwEKQfVTJXNZgfrkhaBf4RLdKOVRP1iQ8OtYyFknPgb7MCjlLXtQRIyak0GjG9TiRVXyyhaZypwhBS2QYoQx7o5yn9rKxEB2wQ9XUQpD9UonDIyZxDOGl5IsIFdaSNiYmLSn8ORsneIi7jilyyCGHcEQnZ1m9FAJWIEDmGnM+mIgossnkuG3MCnX9U0IeJ/+w9FuSueQDqeEn0/TbFMlLCgKO04nAUnOdeEIsF5Na2tFkPDP3ZKAfOeot1VJqCYH/RcBc2mieffLJJ8mBR0xqaV+n/p7XqlXLUi2llhD4XwRSs3d//PHHyYFHTGppX3OdhqOZL7nlLbVTasULgdRffTFpvPMnrK0AABJNSURBVPo2mtZoThrNfku61lyeyJ0IBgUxadJHgw32p85Jtbq3oUekQyEIEHjnDNccl8sWIipaZbS6t7S/nDkpOXTdpbOz1DCpFXcEHCbljrwc6cNjBoOY1NIOdeakjMuMAfaW6i21Eo+Aw6SkesiYXSyWCIlJbexWfsmdBBAk7LFRRekkBLIgkLoZtWrVqiyl4vZYTGpjj5J5xDnFm5562UaNpZMQ+D8EnFT8PFi5cmVCgBGT2tjRTkw+ypnLdmzUUjoJgUwIpI5YtkozFYnhMzGpjZ0qJrWxV6RTYQik3pzI0fvCKkW+lJjUxi5M3afXnNTGHpJO2RFIHbFi0uw46U3wCJi7PE07YtLg8VYLfiIgJvUTTcnygsDmzZud6mJSL0iqbvgIaHUfPuZqMTMC5KgXk2aGRk+tRyD1t3/9+vXW6+uPgton9QdHf6WY++WNzNRfeH9bkTQhEAQCmpMGgapkukEglUkrVKjgRoTqCIESIcD5ZqflrVu3lkiLsJvVnDRsxAtpL3V1z3VMhVRRGSFgCQKpV4Rxn5glWgWthpg0aITdyE+dk4pJ3SCoOqVDgDQRzvVNXFxaOkVCbbl8qK0F1hjUM2fOHHfia9euXa9ePXd1A6qVyqTZLgENqGmJFQLeEWDQmixQyZmTxoRJuYPzpJNOcjcCHnzwQduYVKt7d12pWpYgwELK7JCKSS3pkULVWLZs2cEHH+yU5ifRTOWgJJO4u2LFiuZeOTKD0LtOfhCqtGnTptBmwioXy9X9+PHj6YLmzZuHhWIE2rEHE74UkydPXrhwIQzYsGHDTp067bbbbq4RdBZSyWHS7eCUGH+mTJliRsMll1wSITM7dOjgDGJ+CSKkeUZV+Z3r1q0bFg0cODBjgQQ+tAqTCRMm7LPPPnxHpk+fPnPmzN69e5PPafTo0a77Ze+99zYDGEp1LSRaFWOyus/24+lsnrZs2TJbGQufp85Jd955Zws1zKsSiQFvu+02UgEtXrx46dKl5vwr3428FWNcwE5MRo0ademllw4fPhwCNeC3a9eubdu2Xbt2JUlu//79XfTI9tv/15WdnB6Pue9+7ty5Zhy0atXKxYAoVZVddtnFaTo1Oq9U+rhoF4cDVrRo0WLo0KEkqdSZVzC0EJMVK1b06dOnadOmDo2avu7Spctpp502aNCg+fPnu+h95+c/oqPXhclxnpPye2jmpOz4HHrooS7QKVWV1F/y1PlpqfRx0W61atUGDx7somKMq1iIyYABAzZt2gRvpsPOhsykSZP69es3derU9Le5n3DviCmgyPzcQEXj7fLly02iT7wcToBbNFSXlkIgeAS+//57dkhp5/jjj09vzSzjpk2blpy89+kgFP4kzqv7iG6SFt55KikEvCAwa9Yss+KpXr16uhzjNWJ55GJOmi4t9k/izKQR3SSN/ZiTgZYg8M477xhNUm9ecnRji7NSpUr81/keWaK2nWrEmUk1J7VzzEkrSxAwF3+y8ZXq4UzVzWR1Ss5dTF76JbYeJw78mp9cVi6p18YWCBaD7JRTTmEjqcDyZYrhu3zyyScbNWrkrrpqCYEQEDDDO8dxZONd+O6770JQJupNxJZJFyxYYPaA2DgnpUKx/cQmUd++fTdu3FhsRVMeJq1Tp467uqolBMJBYMOGDTTkxH6mNyomTcck25PYMqnHTVI2iS644IJsqOm5EIgBAmZOmmOeYV65XpnFAKLCTYjtPqk2SQsfBCqZTATM9qhJ2pQRAfMqoqfsMloU3MPYMqmZk/KjqpQZwY0eSY40AubgWV4m1f03hfRyPJmUDaBFixZhf4MGDXROsZBxoDIJRMB8NTiPlO10vDmqJCYtZGzEc5+Uw8JmcLg+bo+/8qabbnK9Q8S66dprr61Ro0YhfaAyQqAkCDhhpNwAWrly5TI68A0yeWf22muvkqgXrUbjyaTeN0nJq0gglGsmZWspouflozV8pa0XBJo1a2aqr1mzJp1JGfxmDDdp0sRLKwmpG08m9ei4p++Jgho7dmxCBoHMTCYC5DjHkcDcc+3ateyDlQHhyy+/NE/at2+fTHyKsjqe+6RmTsrEULHxRY0GFU4UAjVr1uzYsSMmO8dGU82fN28e/61fv758toWMihgyKelpzfk2si7qYs5CBkEIZYzvwkm2FkKL9jdhAybXXHMNQHEJSjpcpNTjIellcwScptdK7JMYMqmztI9WnvxYDkHO7OK1GDdunDlxSFYhbgoiIea2bdtiaW8hRlmFCSt3MpC+9dZbTzzxRKry3EFCwr3Ov30KMUplYn6PE3tAUfyk7kxx4U8UTUBnc6UaywL+qFKlCi5gwm6IajBnEDmMG1G7vKhtISYwOzm5UWzYsGGrV68mpe/IkSNxQPXs2ZMLJd0Zu++++xpupa/dSYhcrXh6nKL+CwnpmAiqXXfdFQ6KqDnMRqHRjGtD5qTJnJZaiAkZTIYMGUKG/DFjxvTq1Yt+YW90xowZjRs3dj3wuOjX9C8X7bkWEq2Kv3ruoqVxErTlblGWV8bSJUuWmPulk2C4bIwHAswDjOufOWlCNsdjuE8ag7GYmp6HxVcMLJIJiULAYc8cKftiBoiY1MYOrVChgqOWmNTGHpJOORFwmDRbDumctSP5UkxqY7elBm8lZHFkYzdIJ7cIiEndIqd6viKgOamvcEpY2AiIScNGXO1lRCB1TqrVfUaI9NBmBMSkNvdOgnTTnDRBnR07UwkHEpPGrlejaZD2SaPZb9L6VwRSd/aTk29fHicbR785CWM0I7+fjSpKJyGQBYHUu0jlu88Ckh6HgkBqskjXOVJD0VSNCIGyCKxbt855JCYti47+HyYCqUxKPvMwm1ZbQsAjAibTvhEiJvUIpqp7QkBM6gk+VS4pAqlz0ooVK5ZUl/Aa1z5peFgX3pKYtHCsVNI2BFKZtFq1arapF5A+YtKAgPUkVkzqCT5VLikCqUzKLT4l1SW8xsWk4WFdeEuptzlqn7Rw3FTSBgTEpDb0gnT4FQEnUS5/i0k1JqKFgJg0Wv0VZ2332GOP3Xff3ViYOi7jbLNsiwsCqb776tWrx8WsPHZodZ8HoFK9rlWrlmmaG3RLpYPaFQIuEEj97a9Xr54LCVGsIia1tNccJl25cuXPP/9sqZZSSwikIeAwKY57Z2mVVipuD8Sklvaow6ScYjYXOViqqNQSAv+LwKpVq8yDAw88MDnYiEkt7evUUbhixQpLtZRaQuB/EWD95AxXMalGR+kR4HZGRwkxaen7QxoUhsDnn3/uZNRN1E2OmpMWNkBCL9WgQQOnzeXLl4fevhoUAm4QWLp0qVNNc1I3CKqOvwgwCp0bRjUn9RdbSQsOgWXLljnCEzUnLR8cppLsBYGddtqJCBIuu0dIpOek5FedPHnywoULt27d2rBhw06dOqVmX/UCUQzqjh8/Hrpp3ry5PbZ4VCmxTKrVvT1juKwmLVq0MI+gobLvIvL/p59+unbt2i+88EKbNm2OO+64N954o06dOo8++mhE1A9Qzc8++6x79+5nnXXWpEmTAmymGNG+qPThhx+aNun31EPPxSgSybKak9rbbS1bthw7diz68TtPHvI999zTXl0zaTZq1KhLL710+PDhvXv3Nu/btWvXtm3brl274pfo379/pkpxfvbNN9/cdtttX3zxxeLFi9lPNGeBuPWohDb7rtL7779vzGndunUJ7Qq/ac1Jw8e80BZbtWrlFH3vvfcKrWZHOfZ2+/Tp07RpU4dGjV5dunQ57bTTBg0aNH/+fDs0DU8LIoTIfMxSY+jQoRy4sOGn0V+VNm/ezI+EAZRVSHjIWtCS5qQWdEIWFZo0aVK+fHlzvxhM2r59+ywFbXw8YMCATZs2wZvpynXr1o0lbb9+/aZOnZr+NsZPOPMzePBgqwz0V6UFCxY4U2zNSa3q6EQrw/ylcePGBoJozUm5e2rChAlofvzxx6d3oZlrT5s2jXlZ+ls9iS4CztKeK0WZB0TXEBeaa3XvArTwqrBVahp79913w2vVc0uzZs364YcfEJMxFZDJ/svkJWlzUs+42i7AGaXsYKTeNG673n7oJyb1A8XAZBx55JFG9qJFiyJ0XfM777xj1K5atWo6NgR4VapUiedz585Nf6sn0UVg9uzZRvmkbZJitZjU6nHrrI45gTdv3jyrdU1RzuSw2GGHHbJdLUkCVorjxY6KRdIzLwKkgPrggw9MMTFpXrhUIFQESJ7vbJW+8sorobbtoTH2SamNuyybDEiWV4R2ZSug55FD4PXXXzfuJn4+iR2OnP4eFdac1COAgVc/+eSTTRsvv/xy4I351MCGDRuQ5Jx2TZcqJk3HJOpP2Bw3JpxyyikJPMYmJrV9AHfs2NGoOGfOnKjc6WTmpOXKlcsGrnllimUro+fRQsBh0jPPPDNamvuirZjUFxgDFHLUUUfVqFGDBrZt2zZ9+vQAW/JPtNkezZHq37wiVsa/NiWplAisWbPG+A8rVKhw6qmnllKVErUtJi0R8AU3y0KY09mmeFQW+Ob0Tl4mNX6ngpFQQXsReP75580m6QknnJDMbhWT2js6Hc3OOecc8/eUKVNKe0y7QLAMk3I6K5u25uBWMr9yBWIYrWJOHpZkLu3pLDFpBEZss2bNDjroIBQllUkkjqs7YaQZN3ahV5O8I1G5giIwztyqyLFgE1jC+omkCm7FRLuemDQC/Yd/xpmWPvLII/ZrDPUbJdk+S9cWR5M5AZW0A4XpUMTjCUulLVu2YEvnzp0znsWIh5m5rRCT5sbHlrcXXnihiRwaM2aMGbW2aJZJDwKzjXd+7dq16e+dq1KjlZMl3RA9MQg8/PDD5o8yeb8ShY+YNBrdTd5c43fiJMmzzz5rudI1a9Y0wVvOsdFUhc1hrfr161uVK95ySK1Vj4NqL774Iupx1t453GyttsEpJiYNDlufJfft29dIjMQC/5prrkFbrrJIR8F4J8jRmSPgNL1W/J4Yt5v51xLrXKg0evRo4vPQn3S0ie5Qtv/1iQoC5hg+Z4fIOW+/zmQg5Qv2+OOPp6o6Y8YM9GdDzX79A9KQTDRkqje3IYAPe8qk9dy4cSNBYwG1mFesa5XgUHOBKKsQhORtKMYFtouxbfEzja19M3kZMmSI/daRdYXExhwcHDZs2OrVq7/66quRI0dWrly5Z8+ebPXar38QGppjlGSc448qVaoQvUDEGAcZzCY4y44gGs0t04tKZl3PmGSFkbuV2L8th4WWrCykRl4E6Cz2Ftl8JCsd95fZcH1FXp0//fRTvGRkCWL+wt7o2Wef7eRkyVs3fgWYuEGjGVfB4MMnR9qXgNDwohI+Qw6JVqxYkfi8hMe0iUkDGp9BiZ05c2aHDh2QfuONN15//fVBNSO5QiAfAtwUy/2GlLr55puvu+66fMVj/l5MGr0OZpORuz0iNC2NHsTSuAAECMJ/7rnniCr56KOPsiWiLUBMTIrIdx+9juSmX9LOc3zon//8Z/S0l8axQIAtJmgUU9gEF42Cg5g0euN6//33NxFRd9xxh5IlR6//oq8x+/VXXXUVdnDPWNeuXaNvkA8WiEl9ADF8Ef379yfVHtNS5qfht64WE44AEcHs1+Mcu++++3Lk804USmLSSHY33tKHHnoI1W+99daFCxdG0gYpHU0E8PWbYxcDBw484ogjommE/1qLSf3HNByJ3ErCCouYzR49euTIBBqOMmolOQjceeedS5YsgUPlr0/tdPnuI/wV2Lp1a+vWrblkfMSIEb169YqwJVI9IgjgpieDF/GwZMhv1KhRRLQOQ00xaRgoB9fGxx9/bFLYscavU6dOcA1JshBg6XP00Ue/+eabnLXv3r27AElFQKv7aI+Hgw8++O677ybVLkcwdVwt2n1pvfYsfaDRv/zlL6LR9L7SnDQdk4g9gUDZsSIjxsSJE5U7OWKdFx11cTRxUrlu3bqcCuHAa3QUD0lTMWlIQKsZISAEYoyAVvcx7lyZJgSEQEgIiElDAlrNCAEhEGMExKQx7lyZJgSEQEgIiElDAlrNCAEhEGMExKQx7lyZJgSEQEgIiElDAlrNCAEhEGMExKQx7lyZJgSEQEgIiElDAlrNCAEhEGMExKQx7lyZJgSEQEgIiElDAlrNCAEhEGMExKQx7lyZJgSEQEgIiElDAlrNCAEhEGMExKQx7lyZJgSEQEgIiElDAlrNCAEhEGMExKQx7lyZJgSEQEgIiElDAlrNCAEhEGMExKQx7lyZJgSEQEgIiElDAlrNCAEhEGME/h8rTUhq6/Ja4gAAAABJRU5ErkJggg==" alt="" />

这里在状态矩阵中加了一个永远为 $1$ 的值,用于辅助 $i$ 每次加一。

 #include<map>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define LL long long
#define RE register
#define IL inline
using namespace std; LL n,m;
struct mat
{
LL a[][];
mat(){for (int i=;i<;i++)for (int j=;j<;j++) a[i][j]=;}
mat operator * (const mat&b)
{
mat ans;
for (int i=;i<;i++)
for (int j=;j<;j++)
for (int k=;k<;k++)
ans.a[i][j]=(ans.a[i][j]+(a[i][k]*b.a[k][j])%m)%m;
return ans;
}
}S; int main()
{
S.a[][]=S.a[][]=;
scanf("%lld%lld",&n,&m);
LL now=;
for (LL s=;now<n;s*=)
{
mat T;
T.a[][]=T.a[][]=T.a[][]=T.a[][]=;
T.a[][]=s%m;
LL nd=min(s-,n)-now;
while (nd)
{
if (nd&) S=S*T;
T=T*T;
nd>>=;
}
now=min(s-,n);
}
printf("%lld\n",S.a[][]);
return ;
}

[HNOI 2011]数学作业的更多相关文章

  1. codevs 2314 数学作业

    2314 数学作业 2011年省队选拔赛湖南  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master     题目描述 Description 小 C 数学成绩优异 ...

  2. BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘

    2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...

  3. bzoj2326: [HNOI2011]数学作业

    矩阵快速幂,分1-9,10-99...看黄学长的代码理解...然而他直接把答案保存在最后一行(没有说明...好吧应该是我智障这都不知道... #include<cstdio> #inclu ...

  4. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  5. CJOJ 1331 【HNOI2011】数学作业 / Luogu 3216 【HNOI2011】数学作业 / HYSBZ 2326 数学作业(递推,矩阵)

    CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异 ...

  6. [luogu P3216] [HNOI2011]数学作业

    [luogu P3216] [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 ...

  7. P3216 [HNOI2011]数学作业 (矩阵快速幂)

    P3216 [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 NN 和 MM ,要求计算 Concatenate (1 .. N ...

  8. BZOJ 2742: [HEOI2012]Akai的数学作业

    2742: [HEOI2012]Akai的数学作业 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 535  Solved: 226[Submit][S ...

  9. [HNOI2011]数学作业 --- 矩阵优化

    [HNOI2011]数学作业 题目描述: 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M ,要求计算\(Concatenate(1..N)\; Mod\; ...

随机推荐

  1. Access数据库自动生成设计文档

    在做Access数据库设计时,常常直接在access文件中建表,建字段,然后写设计文档时,又得重新再写一遍字段和表间关系.其实access数据库自己就支持自动生成数据库文档. 操作方法如下: 数据库工 ...

  2. ORA-03206,当表空间不够时,如何以添加数据文件的方式扩展表空间

    准备导入一个数据库,大约为33G,开始创建的空库表空间为自增到20G,结果自然不够,然后就开始自动扩展表空间大小 使用的如下语句 --自动扩展表空间大小 ALTER DATABASE DATAFILE ...

  3. Maven+SSM框架搭建【spring+springmvc+mybatis】

    本案例用到:ssm[spring+springmvc+mybatis]框架 数据库:mysql (推荐使用mysql 或者 sqlserver  .oracle太大,一般大型项目才会用到) 开发工具: ...

  4. Beta 凡事预则立

    写在Beta冲刺前 关于组长是否重选的议题和结论 总体结论 组长无需更换 队内无人替代 理由 当前组长能够较好的号召和组织团队成员进行工作 当前组长能够对项目有合理的规划 当前组长被大家一致认可可以继 ...

  5. 团队作业7-Beta版本冲刺计划及安排

    a.下一阶段需要改进完善的功能 对部分bug的修改,主要是在未登录时页面跳转的问题以及防止通过对数据库进行注入查询. b.下一阶段新增的功能 1.活动页面,提示打折信息等. 2.商家修改打折信息 3. ...

  6. 团队作业4——第一次项目冲刺(Alpha版本)2017.11.14

    第一次会议:2017-11-14 额--这几天比较忙,忘记上传了,今天补上 先上个图,O(∩_∩)O哈哈: 会议主要内容: 1. 讨论整体框架 2. 个人具体分工 3. 代码统一 具体分工: 成员 计 ...

  7. jQuery 文档操作之prepend() 和prependTo()方法.

    //prepend() $("#btnpre").click(function(){ //该方法在被选元素的开头(仍位于内部)插入指定内容. $("div"). ...

  8. 在bootstrap中让竖向排列的输入框水平排列

    在bootstrap中可以使用自带的样式标记来控制样式,但是同时可以利用最原始的css样式来解决达到需求 如下所示可以看出来两个inline-block就可以使得两个水平排列 block和inline ...

  9. 使用Python3爬虫抓取网页来下载小说

    很多时候想看小说但是在网页上找不到资源,即使找到了资源也没有提供下载,小说当然是下载下来用手机看才爽快啦! 于是程序员的思维出来了,不能下载我就直接用爬虫把各个章节爬下来,存入一个txt文件中,这样, ...

  10. linux下的Shell编程(4)特殊的变量和占位符

    $#表示包括$0在内的命令行参数的个数.在Shell中,脚本名称本身是$0,剩下的依次是$0.$1.$2-.${9},等等. $*表示整个参数列表,不包括$0,也就是说不包括文件名的参数列表. $?表 ...