\[推推公式,即求\Sigma^{n}_{i=1} (x_{i+k}-y_i+c)^2最小,c范围为[-m, m]
\]

\[拆开,就是\Sigma x_i^2 + \Sigma y_i^2 + n * c^2 + 2*c*\Sigma(x_{i+k}-y_i) - 2*\Sigma^{n}_{i=1} x_{i+k}y_i
\]

\[即求2*\Sigma^{n}_{i=1} x_{i+k}y_i最大,再枚举c即可
\]

七十分暴力代码(暴力分贼多)

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e5 + 10); IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} int n, m;
ll sqx, sqy, sx, sy, x[_], y[_], ans = -1e18, mn = 1e18; int main(RG int argc, RG char *argv[]){
n = Read(); m = Read();
for(RG int i = 1; i <= n; ++i) x[i + n] = x[i] = Read(), sx += x[i], sqx += x[i] * x[i];
for(RG int i = 1; i <= n; ++i) y[i] = Read(), sy += y[i], sqy += y[i] * y[i];
for(RG int i = 0; i < n; ++i){
RG ll cnt = 0;
for(RG int j = 1; j <= n; ++j) cnt += x[j + i] * y[j];
ans = max(ans, cnt);
}
for(RG int c = -m; c <= m; ++c) mn = min(mn, 1LL * n * c * c + 1LL * 2 * c * (sx - sy) - 2 * ans);
printf("%lld\n", mn + sqx + sqy);
return 0;
}

\[\Sigma^{n}_{i=1} x_{i+k}y_i,很套路,就往FFT上靠,把y反转不就变成\Sigma^{n}_{i=1} x_{i+k}y_{n-i+1}
\]

\[这不就是卷积,就是多项式相乘后第n+k+1项的系数,这就可以FFT了
\]


把y反转,再倍长,跑一遍FFT,取有用的中间一段的最大值

再枚举c求解即可


# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(4e5 + 10);
const double Pi(acos(-1)); IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} struct Complex{
double real, image;
IL Complex(){ real = image = 0; }
IL Complex(RG double a, RG double b){ real = a; image = b; }
IL Complex operator +(RG Complex B){ return Complex(real + B.real, image + B.image); }
IL Complex operator -(RG Complex B){ return Complex(real - B.real, image - B.image); }
IL Complex operator *(RG Complex B){ return Complex(real * B.real - image * B.image, real * B.image + image * B.real); }
} A[_], B[_];
int n, m, N, M, l, r[_];
ll sx, sy, sqx, sqy, mx = -1e18, ans = 1e18; IL void FFT(RG Complex *P, RG int opt){
for(RG int i = 0; i < N; i++) if(i < r[i]) swap(P[i], P[r[i]]);
for(RG int i = 1; i < N; i <<= 1){
RG Complex W(cos(Pi / i), opt * sin(Pi / i));
for(RG int p = i << 1, j = 0; j < N; j += p){
RG Complex w(1, 0);
for(RG int k = 0; k < i; ++k, w = w * W){
RG Complex X = P[k + j], Y = w * P[k + j + i];
P[k + j] = X + Y; P[k + j + i] = X - Y;
}
}
}
} int main(RG int argc, RG char *argv[]){
n = Read() - 1; m = Read();
for(RG int i = 0; i <= n; ++i) A[i].real = Read(), sx += A[i].real, sqx += A[i].real * A[i].real;
for(RG int i = n; i >= 0; --i) B[i + n + 1].real = B[i].real = Read(), sy += B[i].real, sqy += B[i].real * B[i].real;
for(M = 3 * n, N = 1; N <= M; N <<= 1) ++l;
for(RG int i = 0; i < N; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
FFT(A, 1); FFT(B, 1);
for(RG int i = 0; i < N; ++i) A[i] = A[i] * B[i];
FFT(A, -1);
for(RG int i = n; i <= 2 * n; ++i) mx = max(mx, (ll)(A[i].real / N + 0.5));
for(RG int c = -m; c <= m; ++c) ans = min(ans, 1LL * (n + 1) * c * c + 1LL * 2 * c * (sx - sy));
printf("%lld\n", ans + sqx + sqy - 2 * mx);
return 0;
}

[AH/HNOI2017]礼物的更多相关文章

  1. bzoj 4827: [Hnoi2017]礼物 [fft]

    4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...

  2. P3723 [AH2017/HNOI2017]礼物

    题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...

  3. 【BZOJ4827】 [Hnoi2017]礼物

    BZOJ4827 [Hnoi2017]礼物 Solution 如果一串数的增加,不就等于另一串数减吗? 那么我们可以把答案写成另一个形式: \(ans=\sum_{i=1}^n(x_i-y_i+C)^ ...

  4. 4827: [Hnoi2017]礼物

    4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{ ...

  5. 【LG3723】[AHOI2017/HNOI2017]礼物

    [LG3723][AHOI2017/HNOI2017]礼物 题面 洛谷 题解 首先我们将\(c\)看作一个可以为负的整数,那么我们就可以省去讨论在哪个手环加\(c\)的繁琐步骤了 设我们当前已经选好了 ...

  6. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  7. [BZOJ4827][Hnoi2017]礼物(FFT)

    4827: [Hnoi2017]礼物 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1315  Solved: 915[Submit][Status] ...

  8. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  9. 笔记-[AH2017/HNOI2017]礼物

    笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...

随机推荐

  1. python爬虫登录

    python3 urllib.request 网络请求操作 http://www.cnblogs.com/cocoajin/p/3679821.html python实现 爬取twitter用户姓名 ...

  2. Jenkins配置备份恢复插件ThinBackup

    一.系统管理-管理插件-找到ThinBackup并安装 二.系统管理-找到ThinBackup-点击Setting进行设置 第一个参数备份目录是必选,其它可选,点保存. 三.保存后返回到ThinBac ...

  3. zabbix 3.4.1 解决中文乱码

    docker zabbix中文乱码 基础镜像为:zabbix/zabbix-web-nginx-mysql 1.首先下载msyh.ttf 2.docker cp msyh.ttf 容器:/usr/sh ...

  4. 在CentOS 7中安装Jetty服务器

    Jetty 是一款纯Java的HTTP (Web) 服务器和Java Servlet容器. 通常在更大的网络框架中,Jetty经常用于设备间的通信,而其他Web服务器通常给"人类" ...

  5. neo-thinsdk-cs 之 thinWallet 接入私链

    neo-thinsdk-cs 之 thinWallet 接入私链 2017年底刚开始接触区块链,目前在被 NEO 折磨. 一开始被官方文档和 NEO-GUI 搞得体无完肤(尤其是传说中的 F12),也 ...

  6. 测试同学难道要写一辈子的hello world?

    最近我们在测试团队内推行自动化用例责任制,大致的意思是:我们安排培训资源,提供技术支持和一对一辅导,要求每一个自主选择了自动化和接口测试发展通道的同学必须让自己负责的项目自动化用例覆盖率有所提升. 后 ...

  7. Linux shell的问题

    1.uptime命令可以查看当前系统的启动时间: w命令显示当前登录者top命令显示当前任务ps命令显示所有进程信息 uptime命令可以查看系统启动时间   2.使用shell时,默认的环境变量放在 ...

  8. 工业级GBDT算法︱微软开源 的LightGBM(R包正在开发....)

    看完一篇介绍文章后,第一个直觉就是这算法已经配得上工业级属性.日前看到微软已经公开了这一算法,而且已经发开python版本,本人觉得等hadoop+Spark这些平台配齐之后,就可以大规模宣传啦~如果 ...

  9. 【转载】Ubuntu环境下安装QT(转)

    Ubuntu 安装 Qt 开发环境 简单实现是本文要介绍的内容,内容很短,取其精华,详细介绍Qt 类库的说明,先来看内容. 一.Ubuntu下安装Qt $ sudo apt-get install q ...

  10. TOE(TCP/IP Offload Engine)网卡与一般网卡的区别

    TCP减压引擎,第一次听说这个名词,但是并不是一个新的概念了,若干年前听说过设备厂商在研究在FPGA之中实现TCP Stack,但是后来没有听到任何的产品出来,应该是路由设备to host的traff ...