代码示例来自https://github.com/aymericdamien/TensorFlow-Examples

  • tensorflow先定义运算图,在run的时候才会进行真正的运算。
  • run之前需要先建立一个session
  • 常量用constant 如a = tf.constant(2)
  • 变量用placeholder 需要指定类型 如a = tf.placeholder(tf.int16)

矩阵相乘

matrix1 = tf.constant([[3., 3.]])  #1*2矩阵
matrix2 = tf.constant([[2.],[2.]]) #2*1矩阵
product = tf.matmul(matrix1, matrix2) #矩阵相乘得到1*1矩阵
with tf.Session() as sess:
result = sess.run(product) #result类型为ndarray
print(result)
# ==> [[ 12.]]
'''
Basic Operations example using TensorFlow library.
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
''' from __future__ import print_function import tensorflow as tf # Basic constant operations
# The value returned by the constructor represents the output
# of the Constant op.
a = tf.constant(2)
b = tf.constant(3) # Launch the default graph.
with tf.Session() as sess:
print("a=2, b=3")
print("Addition with constants: %i" % sess.run(a+b))
print("Multiplication with constants: %i" % sess.run(a*b)) # Basic Operations with variable as graph input
# The value returned by the constructor represents the output
# of the Variable op. (define as input when running session)
# tf Graph input
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16) # Define some operations
add = tf.add(a, b)
mul = tf.multiply(a, b) # Launch the default graph.
with tf.Session() as sess:
# Run every operation with variable input
print("Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3}))
print("Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3})) # ----------------
# More in details:
# Matrix Multiplication from TensorFlow official tutorial # Create a Constant op that produces a 1x2 matrix. The op is
# added as a node to the default graph.
#
# The value returned by the constructor represents the output
# of the Constant op.
matrix1 = tf.constant([[3., 3.]]) # Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2.],[2.]]) # Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs.
# The returned value, 'product', represents the result of the matrix
# multiplication.
product = tf.matmul(matrix1, matrix2) # To run the matmul op we call the session 'run()' method, passing 'product'
# which represents the output of the matmul op. This indicates to the call
# that we want to get the output of the matmul op back.
#
# All inputs needed by the op are run automatically by the session. They
# typically are run in parallel.
#
# The call 'run(product)' thus causes the execution of threes ops in the
# graph: the two constants and matmul.
#
# The output of the op is returned in 'result' as a numpy `ndarray` object.
with tf.Session() as sess:
result = sess.run(product)
print(result)
# ==> [[ 12.]]

eager api

详细解释参见https://www.zhihu.com/question/67471378

之前说过tensorflow是先定义运算图,在session.run的时候才会真正做运算.

tensorflow推出了eager api.使得tf(tensorflow简称)中的函数可以像我们熟知的普通函数一样,调用后立刻可以得到结果,更方便调试.

坏处是和之前的有些代码不兼容.比如和Basic1里的示例代码就无法兼容.

  • tfe.enable_eager_execution() 开启eager模式要放在代码最前面
'''
Basic introduction to TensorFlow's Eager API. Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/ What is Eager API?
" Eager execution is an imperative, define-by-run interface where operations are
executed immediately as they are called from Python. This makes it easier to
get started with TensorFlow, and can make research and development more
intuitive. A vast majority of the TensorFlow API remains the same whether eager
execution is enabled or not. As a result, the exact same code that constructs
TensorFlow graphs (e.g. using the layers API) can be executed imperatively
by using eager execution. Conversely, most models written with Eager enabled
can be converted to a graph that can be further optimized and/or extracted
for deployment in production without changing code. " - Rajat Monga '''
from __future__ import absolute_import, division, print_function import numpy as np
import tensorflow as tf
import tensorflow.contrib.eager as tfe # Set Eager API
print("Setting Eager mode...")
tfe.enable_eager_execution() # Define constant tensors
print("Define constant tensors")
a = tf.constant(2)
print("a = %i" % a)
b = tf.constant(3)
print("b = %i" % b) # Run the operation without the need for tf.Session
print("Running operations, without tf.Session")
c = a + b
print("a + b = %i" % c)
d = a * b
print("a * b = %i" % d) # Full compatibility with Numpy
print("Mixing operations with Tensors and Numpy Arrays") # Define constant tensors
a = tf.constant([[2., 1.],
[1., 0.]], dtype=tf.float32)
print("Tensor:\n a = %s" % a)
b = np.array([[3., 0.],
[5., 1.]], dtype=np.float32)
print("NumpyArray:\n b = %s" % b) # Run the operation without the need for tf.Session
print("Running operations, without tf.Session") c = a + b
print("a + b = %s" % c) d = tf.matmul(a, b)
print("a * b = %s" % d) print("Iterate through Tensor 'a':")
for i in range(a.shape[0]):
for j in range(a.shape[1]):
print(a[i][j])

卷积神经网络

阅读这部分之前先要对卷积神经网络有多了解.参见https://www.cnblogs.com/sdu20112013/p/10149529.html

神经网络的参数

  • 输入层 样本X的维度 图片为28*28->784
  • 全连接层的输出 图片种类,0到数字9共10种
  • dropout = 0.25 # Dropout, probability to drop a unit 为了防止过拟合,丢弃某些神经元的输出

训练参数

  • 学习率
  • batch_size 梯度求解参考的样本数量
  • num_steps 可能是只迭代的轮次?

构建一个CNN

  • 卷积层,池化层,完成特征提取.
  • 卷积层 32个filter filter的size是5*5 激活函数relu
  • 池化层 2个filter filter的size是2*2
# Convolution Layer with 32 filters and a kernel size of 5
conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
  • 卷积层,池化层,进一步提取特征
# Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
  • 全连接层,完成分类
# Flatten the data to a 1-D vector for the fully connected layer
#全连接层接收的是个M*N的矩阵 flatten:拍平.可以理解为把一摞叠起来的矩阵拍平
fc1 = tf.contrib.layers.flatten(conv2) # Fully connected layer (in tf contrib folder for now)
#全连接层有1024个神经元
fc1 = tf.layers.dense(fc1, 1024)
# Apply Dropout (if is_training is False, dropout is not applied)
#对训练集,要对部分神经元做dropout,以引入非线性.只有训练集才会dropout
fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) # Output layer, class prediction
#对全连接层输出做分类
out = tf.layers.dense(fc1, n_classes)

模型构建好了,现在需要告诉我们的模型损失函数有关的信息,这样模型才能够知道如何求梯度,并进而更新神经元之间的权重信息.

tensorflow要求我们定一个Estimator

  • 损失函数定义
  • 最优化算法定义
  • 模型准确度定义
  • TF Estimators requires to return a EstimatorSpec, that specify the different ops for training, evaluating,
logits_train = conv_net(features, num_classes, dropout, reuse=False,is_training=True)
loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))#损失函数定义
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)#最优化算法 也可以用小批量梯度下降法SGD
train_op = optimizer.minimize(loss_op,global_step=tf.train.get_global_step())#最优化目标:使得loss最小

至此,我们已经完成了模型的创建,下面就是把数据转换成合适的格式喂给模型,进行训练.

# Define the input function for training
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': mnist.train.images}, y=mnist.train.labels,
batch_size=batch_size, num_epochs=None, shuffle=True)
# Train the Model
model.train(input_fn, steps=num_steps) # Evaluate the Model
# Define the input function for evaluating
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': mnist.test.images}, y=mnist.test.labels,
batch_size=batch_size, shuffle=False)
# Use the Estimator 'evaluate' method
e = model.evaluate(input_fn)
""" Convolutional Neural Network.

Build and train a convolutional neural network with TensorFlow.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/) This example is using TensorFlow layers API, see 'convolutional_network_raw'
example for a raw implementation with variables. Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""
from __future__ import division, print_function, absolute_import # Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) import tensorflow as tf # Training Parameters
learning_rate = 0.001
num_steps = 2000
batch_size = 128 # Network Parameters
num_input = 784 # MNIST data input (img shape: 28*28)
num_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.25 # Dropout, probability to drop a unit # Create the neural network
def conv_net(x_dict, n_classes, dropout, reuse, is_training):
# Define a scope for reusing the variables
with tf.variable_scope('ConvNet', reuse=reuse):
# TF Estimator input is a dict, in case of multiple inputs
x = x_dict['images'] # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
# Reshape to match picture format [Height x Width x Channel]
# Tensor input become 4-D: [Batch Size, Height, Width, Channel]
x = tf.reshape(x, shape=[-1, 28, 28, 1]) # Convolution Layer with 32 filters and a kernel size of 5
conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv1 = tf.layers.max_pooling2d(conv1, 2, 2) # Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max_pooling2d(conv2, 2, 2) # Flatten the data to a 1-D vector for the fully connected layer
fc1 = tf.contrib.layers.flatten(conv2)
print("fcl shape",fc1.shape) # Fully connected layer (in tf contrib folder for now)
fc1 = tf.layers.dense(fc1, 1024)
# Apply Dropout (if is_training is False, dropout is not applied)
fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) # Output layer, class prediction
out = tf.layers.dense(fc1, n_classes) return out # Define the model function (following TF Estimator Template)
def model_fn(features, labels, mode):
# Build the neural network
# Because Dropout have different behavior at training and prediction time, we
# need to create 2 distinct computation graphs that still share the same weights.
logits_train = conv_net(features, num_classes, dropout, reuse=False,
is_training=True)
print("logits_train.shape",logits_train.shape)
logits_test = conv_net(features, num_classes, dropout, reuse=True,
is_training=False) # Predictions
pred_classes = tf.argmax(logits_test, axis=1)
pred_probas = tf.nn.softmax(logits_test) # If prediction mode, early return
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) # Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op,
global_step=tf.train.get_global_step()) # Evaluate the accuracy of the model
acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes) # TF Estimators requires to return a EstimatorSpec, that specify
# the different ops for training, evaluating, ...
estim_specs = tf.estimator.EstimatorSpec(
mode=mode,
predictions=pred_classes,
loss=loss_op,
train_op=train_op,
eval_metric_ops={'accuracy': acc_op}) return estim_specs # Build the Estimator
model = tf.estimator.Estimator(model_fn) # Define the input function for training
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': mnist.train.images}, y=mnist.train.labels,
batch_size=batch_size, num_epochs=None, shuffle=True)
# Train the Model
model.train(input_fn, steps=num_steps) # Evaluate the Model
# Define the input function for evaluating
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': mnist.test.images}, y=mnist.test.labels,
batch_size=batch_size, shuffle=False)
# Use the Estimator 'evaluate' method
e = model.evaluate(input_fn) print("Testing Accuracy:", e['accuracy'])

顺便,说说我所理解的神经网络,"神经元"听着玄乎,其实每一个神经元就是y=ax+b而已,a,x都是矩阵. 神经元之间是有权重关系的,前一个神经元的输出作为下一个神经元的输入,赋以权重w. 通过这样的多层神经元,尽管每个神经元都做得是一个线性变化,(当然为了非线性会引入relu/sigmoid等),组合起来确取得了模拟非线性的效果,利用反向传播算法,更新整个网络中的神经元之间的权重w.达到使误差最小. 本质上神经网络就是求矩阵w的运算.

TensorFlow tutorial的更多相关文章

  1. Tensorflow - Tutorial (7) : 利用 RNN/LSTM 进行手写数字识别

    1. 经常使用类 class tf.contrib.rnn.BasicLSTMCell BasicLSTMCell 是最简单的一个LSTM类.没有实现clipping,projection layer ...

  2. 吴恩达深度学习第2课第3周编程作业 的坑(Tensorflow+Tutorial)

    可能因为Andrew Ng用的是python3,而我是python2.7的缘故,我发现了坑.如下: 在辅助文件tf_utils.py中的random_mini_batches(X, Y, mini_b ...

  3. 【tensorflow使用笔记三】:tensorflow tutorial中的源码阅读

    https://blog.csdn.net/victoriaw/article/details/61195620#t0 input_data 没用的另一种解决方法:tensorflow1.8版本及以上 ...

  4. TensorFlow 中文资源全集,官方网站,安装教程,入门教程,实战项目,学习路径。

    Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目, ...

  5. tensorflow学习笔记3:写一个mnist rpc服务

    本篇做一个没有实用价值的mnist rpc服务,重点记录我在调试整合tensorflow和opencv时遇到的问题: 准备模型 mnist的基础模型结构就使用tensorflow tutorial给的 ...

  6. 一份快速完整的Tensorflow模型保存和恢复教程(译)(转载)

    该文章转自https://blog.csdn.net/sinat_34474705/article/details/78995196 我在进行图像识别使用ckpt文件预测的时候,这个文章给我提供了极大 ...

  7. [Tensorflow] Object Detection API - retrain mobileNet

    前言 一.专注话题 重点话题 Retrain mobileNet (transfer learning). Train your own Object Detector. 这部分讲理论,下一篇讲实践. ...

  8. Awesome TensorFlow

    Awesome TensorFlow  A curated list of awesome TensorFlow experiments, libraries, and projects. Inspi ...

  9. CNN tensorflow text classification CNN文本分类的例子

    from:http://deeplearning.lipingyang.org/tensorflow-examples-text/ TensorFlow examples (text-based) T ...

随机推荐

  1. 基于.NET CORE微服务框架 -谈谈surging 的messagepack、protobuffer、json.net 序列化

    1.前言 surging内部使用的是高性能RPC远程服务调用,如果用json.net序列化肯定性能上达不到最优,所以后面扩展了protobuf,messagepack序列化组件,以支持RPC二进制传输 ...

  2. SprintBoot的@ComponentScan“踩坑”

    主要的话说在前面:在启动日志中没有看到Controller对应的URL被映射,那么请检查你的Controller是否被Spring管理了.此次踩坑就是忘了SpringBoot在没配置@Componen ...

  3. 亲测可用,iptables实现NAT转发。

    环境 服务器A:192.168.1.7 服务器B: 192.168.1.160 需求 实现将本机(192.168.1.7:7410)端口流量转发给(192.168.1.160:9200). 1. 内核 ...

  4. ASP.NET Core 实现带认证功能的Web代理服务器

    引言 最近在公司开发了一个项目,项目部署架构图如下: 思路 如图中文本所述,公司大数据集群不允许直接访问外网,需要一个网关服务器代理请求,本处服务器A就是边缘代理服务器的作用. 通常技术人员最快捷的思 ...

  5. javascript数组的常用算法解析

    一.不改变原数组,返回新数组(字符串) 1.concat()   连接两个或者多个数组,两边的原始数组都不会变化,返回的是被连接数组的一个副本. 2.join()  把数组中所有的元素放入到一个字符串 ...

  6. 关于 JavaScript 中的继承

    ES5 之前,继续是这样实现的 function Parent() { this.foo = function() { console.log('foo'); }; } Parent.prototyp ...

  7. Shim 与 Polyfill

    Shim: 用来向后兼容.比如 requestIdleCallback,为了在旧的环境中不报错,可以加 shim. 使用环境中现有的 api 来实现,不会引入额外的依赖或其他技术. Polyfill: ...

  8. 已实现乐观锁功能,FreeSql.DbContext 准备起航

    上回说到 FreeSql.DbContext 的规则,以及演示它的执行过程,可惜当时还不支持"乐观锁",对于更新数据来讲并不安全. FreeSql 核心库 v0.3.27 已提供乐 ...

  9. Asp.Net Core 轻松学-正确使用分布式缓存

    前言     本来昨天应该更新的,但是由于各种原因,抱歉,让追这个系列的朋友久等了.上一篇文章 在.Net Core 使用缓存和配置依赖策略 讲的是如何使用本地缓存,那么本篇文章就来了解一下如何使用分 ...

  10. Redis主从同步要深入理解?一篇文章足矣!

    前言: 今天想和大家分享有关 Redis 主从同步(也称「复制」)的内容. 我们知道,当有多台 Redis 服务器时,肯定就有一台主服务器和多台从服务器.一般来说,主服务器进行写操作,从服务器进行读操 ...