[HNOI2012]集合选数(状压DP+构造)
题目要求若出现x,则不能出现2x,3x
所以我们考虑构造一个矩阵
\(1\ 2\ 4 \ 8……\)
\(3\ 6\ 12\ 24……\)
\(9\ 18\ 36……\)
\(……\)
不难发现,对于一个矩阵,若我选择了一个数x,则在矩阵内该数的相邻格子都不能选,题目就被转化成了玉米田了,可以用状压DP解决
但是直接做是不对的,比如5就没有出现在这个序列中
所以我们可以构造多个矩阵,用乘法原理统计答案即可
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define debug printf("Now is Line : %d\n",__LINE__)
#define file(a) freopen(#a".in","r",stdin);//freopen(#a".out","w",stdout)
#define int long long
#define inf 123456789
#define mod 1000000001
il int read() {
re int x = 0, f = 1; re char c = getchar();
while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x * f;
}
#define rep(i, s, t) for(re int i = s; i <= t; ++ i)
#define drep(i, s, t) for(re int i = t; i >= s; -- i)
#define mem(k, p) memset(k, p, sizeof(k))
#define maxn 100005
int n, m, a[20][20], g[1 << 15], vis[maxn], H, L[20], dp[20][1 << 15], ans = 1;
il void martix(int x) {
H = 0;
rep(i, 1, 18) {
a[i][1] = (i == 1) ? x : a[i - 1][1] * 2;
if(a[i][1] > n) break;
++ H, L[i] = vis[a[i][1]] = 1;
rep(j, 2, 11) {
a[i][j] = a[i][j - 1] * 3;
if(a[i][j] > n) break;
L[i] = j, vis[a[i][j]] = 1;
}
}
}
il int solve() {
rep(i, 0, (1 << L[1]) - 1) dp[1][i] = g[i];
rep(i, 2, H) {
rep(j, 0, (1 << L[i]) - 1) {
if(!g[j]) continue;
dp[i][j] = 0;
rep(k, 0, (1 << L[i - 1]) - 1) {
if(g[k] && (k & j) == 0) dp[i][j] += dp[i - 1][k];
}
}
}
int t = 0;
rep(i, 0, (1 << L[H]) - 1) t = (t + dp[H][i]) % mod;
return t;
}
signed main() {
n = read();
rep(i, 0, (1 << 11) - 1) g[i] = !(i & (i << 1));
rep(i, 1, n) if(!vis[i]) martix(i), ans = ans * solve() % mod;
printf("%lld", ans);
return 0;
}
[HNOI2012]集合选数(状压DP+构造)的更多相关文章
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- $HNOI2012\ $ 集合选数 状压$dp$
\(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
随机推荐
- 简简单单的Vue1(MVVM与Vue的双向绑定原理)
既然选择了远方,便只顾风雨兼程 __ HANS许 系列:零基础搭建前后端分离项目 系列:零基础搭建前后端分离项目 Vue 在此之前的文章我们讲述了前端开发的工具,语言的知识,接下来我们从头开始学习一个 ...
- 使用go, gin, gorm编写一个简单的curd的api接口
go 是一门非常灵活的语言,既具有静态语言的高性能,又有动态语言的开发速度快的优点,语法也比较简单,下面是通过简单的代码实现了一个简单的增删改查 api 接口 hello world 常规版 新建 d ...
- 002. https通信(CA证书认证 + 密钥商定 )
服务端与客户端建立https通信的过程: 一.认证:客户端第一次访问服务端时,要求服务端证明自己可被信任 1.证书:由服务端申请.第三方CA颁发的,存放在服务端的证书: 证书包含:服务端的公钥.服务端 ...
- 升级WIN10 (9879)后IE无响应的解决办法
身为程序猿,当然有了新系统就要尝尝鲜,有WIN8时,哥是朋友圈第一个用的,有WIN8.1时哥也是第一个升级的. 现在WIN10来了,当然也得赶紧尝尝鲜.直接下载了 9879版的预览版本安装. 要说WI ...
- APP 技术支持
APP使用过程中,有任何问题,可以在此博客下方留言. 或者,发送邮件到邮箱:nbglsoft@163.com 反馈的任何问题,我们将在2个工作日内进行响应. 感谢大家的支持!
- 小程序应用的Python服务器部署高配,依然是腾讯云秒杀阿里云!
上一篇文章,“小程序创业最低配置部署,腾讯云折扣秒杀阿里云!”介绍了小程序项目启动时的最低配置服务器选择,但当项目良好发展时,还是要把服务器配置调整到标准水平,承受住日益增长的流量访问. 随着Pyth ...
- 两种方法实现asp.net方案的前后端数据交互(aspx文件、html+ashx+ajax)
一个HTML页面只能显示HTML代码信息,不能与数据库进行数据的交互.asp.net方案提供了网页与数据库交互的方法,这里举出两种:①aspx文件 ②ashx文件+ajax技术 一.创建数据库 这里以 ...
- Odoo / PS Cloud12版本中,产品变体功能如何使用
场景: 产品:陶瓷马克杯 产品颜色变体:红色.蓝色.白色 产品尺寸变体:10CM.12CM.15CM 每个变体都有不同价格维度 odoo / PS Cloud 专业实施开发 EMAIL:1715860 ...
- typescript的函数
1:默认参数(传入值会覆盖默认参数,不传值也行) function getinfo(name:string,age:number=20):string{ return `${name}---${age ...
- (办公)工作中的编码不良习惯Java(不定时更新)
1.别瞎写,方法里能用封装好的类,就别自己写HashMap. 2.方法名,整的方法名都是啥?退出close,用out. 3.git提交版本,自己写的代码,注释,提交版本的时候,一定要清理掉.每个判断能 ...