【LOJ#3096】[SNOI2019]数论
【LOJ#3096】[SNOI2019]数论
题面
题解
考虑枚举一个\(A\),然后考虑有多少个合法的\(B\)。
首先这个数可以写成\(a_i+kP\)的形式,那么它模\(Q\)的值成环。
所以我们预处理每个环内有多少个合法的\(b\),再把\(b\)按照访问顺序记录一下,那么对于每一个\(a\)就可以直接算答案了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 1001000
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int A[MAX],B[MAX],ID[MAX];
vector<int> G[MAX];
int P,Q,D,n,m;ll T,ans;
int main()
{
P=read();Q=read();n=read();m=read();T=read()-1;
for(int i=1;i<=n;++i)A[i]=read();
for(int i=1;i<=m;++i)B[read()]=1;
D=__gcd(P,Q);
for(int i=0;i<D;++i)
{
int u=i,cnt=0;
while(!cnt||u!=i)
{
ID[u]=++cnt;
if(B[u])G[i].push_back(cnt);
u=(u+P)%Q;
}
}
ll c=1ll*P*Q/D;
for(int i=1;i<=n;++i)
{
ll cir=(T-A[i])/c;
ans+=cir*(int)(G[A[i]%D].size());
ll st=(T-cir*c-A[i])/P;
int L=ID[A[i]],R=ID[(A[i]+st*P)%Q];
if(L<=R)
{
ans+=upper_bound(G[A[i]%D].begin(),G[A[i]%D].end(),R)-G[A[i]%D].begin();
ans-=upper_bound(G[A[i]%D].begin(),G[A[i]%D].end(),L-1)-G[A[i]%D].begin();
}
else
{
swap(L,R);ans+=G[A[i]%D].size();
L+=1;R-=1;if(L>R)continue;
ans-=upper_bound(G[A[i]%D].begin(),G[A[i]%D].end(),R)-G[A[i]%D].begin();
ans+=upper_bound(G[A[i]%D].begin(),G[A[i]%D].end(),L-1)-G[A[i]%D].begin();
}
}
printf("%lld\n",ans);
return 0;
}
【LOJ#3096】[SNOI2019]数论的更多相关文章
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- 【LG5330】[SNOI2019]数论
[LG5330][SNOI2019]数论 题面 洛谷 题目大意: 给定集合\(\mathbb {A,B}\) 问有多少个小于\(T\)的非负整数\(x\)满足:\(x\)除以\(P\)的余数属于\(\ ...
- 洛谷$P5330\ [SNOI2019]$数论 数论
正解:数论 解题报告: 传送门$QwQ$ ,,,这题还蛮妙的$QwQ$(,,,其实所有数论题对我来说都挺妙的$kk$然后我真的好呆昂我理解了好久$QAQ$ 考虑先建$Q$个点,编号为$[0,Q)$,表 ...
- [SNOI2019]数论
题目 考虑对于每一个\(a_i\)计算有多少个\(0<x\leq T-1\)满足\(x\equiv a_i(mod\ P)\)且\(x\ mod\ Q \in B\) 显然\(x=a_i+k\t ...
- Luogu P5330 [SNOI2019]数论
题目 如果\(P>Q\)的话我们先交换一下\(P,Q\). 我们先枚举所有满足第一个条件的数,对于\(x\equiv a_i(mod\ P)\),设\(x=a_i+kP(k\in[0,\lflo ...
- LOJ#3097 [SNOI2019]通信 最小费用最大流+cdq分治/主席树/分块优化建图
瞎扯 我们网络流模拟赛(其实是数据结构模拟赛)的T2. 考场上写主席树写自闭了,直接交了\(80pts\)的暴力,考完出来突然发现: woc这个题一个cdq几行就搞定了! 题意简述 有\(n\)个哨站 ...
- 【LOJ】#3096. 「SNOI2019」数论
LOJ#3096. 「SNOI2019」数论 如果\(P > Q\)我们把\(P\)和\(Q\)换一下,现在默认\(P < Q\) 这个时候每个合法的\(a_i\)都可以直接落到\(Q\) ...
- 【LOJ#3097】[SNOI2019]通信(费用流)
[LOJ#3097][SNOI2019]通信(费用流) 题面 LOJ 题解 暴力就直接连\(O(n^2)\)条边. 然后分治/主席树优化连边就行了. 抄zsy代码,zsy代码是真的短 #include ...
- 【LOJ#3095】[SNOI2019]字符串(后缀数组)
[LOJ#3095][SNOI2019]字符串(后缀数组) 题面 LOJ 题解 首先画图看看如何比较两个串的大小,发现这个东西等价于求两个相邻的后缀的\(LCP\). 一个做法是求出\(SA\),然后 ...
随机推荐
- .Net Core 实践 - 如何在控制台应用(.Net Core)使用appsettings.json配置
新建控制台应用(.Net Core)程序 添加json文件,命名为appsettings.json,设置文件属性 如果较新则复制.添加内容如下 { "MyWords" : &quo ...
- asp.net三层架构增删改查
数据库 use master if exists (select * from sysdatabases where name='bond') drop database bond create da ...
- 【网摘】C#中TransactionScope的使用方法和原理
时间 2013-08-12 19:59:34 51CTO推荐博文 原文 http://cnn237111.blog.51cto.com/2359144/1271600 在.net 1.1的时代,还 ...
- APP网站安全漏洞检测服务的详细介绍
01)概述: 关于APP漏洞检测,分为两个层面的安全检测,包括手机应用层,以及APP代码层,与网站的漏洞检测基本上差不多,目前越来越多的手机应用都存在着漏洞,关于如何对APP进行漏洞检测,我们详细的介 ...
- vue和angular的区别:
相同: 1.数据绑定:vue和angular绑定都可以用{{}} 2.都支持内置指令和自定义指令 3.都支持内置过滤器和自定义过滤器. 区别: 1.学习成本和API 设计:vue相比于angular来 ...
- 对css盒模型的理解
介绍一下标准css的盒子模型?低版本IE的盒子模型有什么不同的? 1.有两种:IE盒子模型(怪异模式).W3c盒子模型(标准模式). 2.盒模型组成:内容(content).内边距(padding). ...
- SQL优化小技巧
我们要做到不但会写SQL,还要做到写出性能优良的SQL语句. 1.使用表的别名(Alias): 当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析 ...
- Delphi 数据转换
指针转换 Pointer——string string:=PChar(Pointer);{ Pointer指向的数据要以#0结尾.使用System.AllocMem(Size)分配的内存是用#0填 ...
- Linux(CentOS7)下远程拷贝文件,scp命令
一.Linux版本 二.scp命令 scp [参数] [原路径] [目标路径] scp -P 22022 /home/file.war root@192.168.253.172:/home/test ...
- cent os 7 与cent os 6区别
原文地址:https://www.cnblogs.com/Csir/p/6746667.html 前言 centos7与6之间最大的差别就是初始化技术的不同,7采用的初始化技术是Systemd,并行的 ...