【LOJ#3096】[SNOI2019]数论
【LOJ#3096】[SNOI2019]数论
题面
题解
考虑枚举一个\(A\),然后考虑有多少个合法的\(B\)。
首先这个数可以写成\(a_i+kP\)的形式,那么它模\(Q\)的值成环。
所以我们预处理每个环内有多少个合法的\(b\),再把\(b\)按照访问顺序记录一下,那么对于每一个\(a\)就可以直接算答案了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 1001000
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int A[MAX],B[MAX],ID[MAX];
vector<int> G[MAX];
int P,Q,D,n,m;ll T,ans;
int main()
{
P=read();Q=read();n=read();m=read();T=read()-1;
for(int i=1;i<=n;++i)A[i]=read();
for(int i=1;i<=m;++i)B[read()]=1;
D=__gcd(P,Q);
for(int i=0;i<D;++i)
{
int u=i,cnt=0;
while(!cnt||u!=i)
{
ID[u]=++cnt;
if(B[u])G[i].push_back(cnt);
u=(u+P)%Q;
}
}
ll c=1ll*P*Q/D;
for(int i=1;i<=n;++i)
{
ll cir=(T-A[i])/c;
ans+=cir*(int)(G[A[i]%D].size());
ll st=(T-cir*c-A[i])/P;
int L=ID[A[i]],R=ID[(A[i]+st*P)%Q];
if(L<=R)
{
ans+=upper_bound(G[A[i]%D].begin(),G[A[i]%D].end(),R)-G[A[i]%D].begin();
ans-=upper_bound(G[A[i]%D].begin(),G[A[i]%D].end(),L-1)-G[A[i]%D].begin();
}
else
{
swap(L,R);ans+=G[A[i]%D].size();
L+=1;R-=1;if(L>R)continue;
ans-=upper_bound(G[A[i]%D].begin(),G[A[i]%D].end(),R)-G[A[i]%D].begin();
ans+=upper_bound(G[A[i]%D].begin(),G[A[i]%D].end(),L-1)-G[A[i]%D].begin();
}
}
printf("%lld\n",ans);
return 0;
}
【LOJ#3096】[SNOI2019]数论的更多相关文章
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- 【LG5330】[SNOI2019]数论
[LG5330][SNOI2019]数论 题面 洛谷 题目大意: 给定集合\(\mathbb {A,B}\) 问有多少个小于\(T\)的非负整数\(x\)满足:\(x\)除以\(P\)的余数属于\(\ ...
- 洛谷$P5330\ [SNOI2019]$数论 数论
正解:数论 解题报告: 传送门$QwQ$ ,,,这题还蛮妙的$QwQ$(,,,其实所有数论题对我来说都挺妙的$kk$然后我真的好呆昂我理解了好久$QAQ$ 考虑先建$Q$个点,编号为$[0,Q)$,表 ...
- [SNOI2019]数论
题目 考虑对于每一个\(a_i\)计算有多少个\(0<x\leq T-1\)满足\(x\equiv a_i(mod\ P)\)且\(x\ mod\ Q \in B\) 显然\(x=a_i+k\t ...
- Luogu P5330 [SNOI2019]数论
题目 如果\(P>Q\)的话我们先交换一下\(P,Q\). 我们先枚举所有满足第一个条件的数,对于\(x\equiv a_i(mod\ P)\),设\(x=a_i+kP(k\in[0,\lflo ...
- LOJ#3097 [SNOI2019]通信 最小费用最大流+cdq分治/主席树/分块优化建图
瞎扯 我们网络流模拟赛(其实是数据结构模拟赛)的T2. 考场上写主席树写自闭了,直接交了\(80pts\)的暴力,考完出来突然发现: woc这个题一个cdq几行就搞定了! 题意简述 有\(n\)个哨站 ...
- 【LOJ】#3096. 「SNOI2019」数论
LOJ#3096. 「SNOI2019」数论 如果\(P > Q\)我们把\(P\)和\(Q\)换一下,现在默认\(P < Q\) 这个时候每个合法的\(a_i\)都可以直接落到\(Q\) ...
- 【LOJ#3097】[SNOI2019]通信(费用流)
[LOJ#3097][SNOI2019]通信(费用流) 题面 LOJ 题解 暴力就直接连\(O(n^2)\)条边. 然后分治/主席树优化连边就行了. 抄zsy代码,zsy代码是真的短 #include ...
- 【LOJ#3095】[SNOI2019]字符串(后缀数组)
[LOJ#3095][SNOI2019]字符串(后缀数组) 题面 LOJ 题解 首先画图看看如何比较两个串的大小,发现这个东西等价于求两个相邻的后缀的\(LCP\). 一个做法是求出\(SA\),然后 ...
随机推荐
- function string类型的参数传递
1.错误案例: Index:1 Uncaught ReferenceError: 系统管理 is not defined at HTMLAnchorElement.onclick (Index:1) ...
- 使用 MSIX 打包 DotNetCore 3.0 客户端程序
如何你希望你的 WPF 程序能够以 Windows 的保护机制保护起来,不被轻易反编译的话,那么这篇文章应该能帮到你. 介绍 MSIX 是微软于去年的 Windows 开发者日峰会 上推出的全新应用打 ...
- 弹性布局--flex方向
flex方向 flex方向由flex-direction特性决定,用于定义弹性布局模式.flex-direction共有4种模式:从左向右.从右向左.从上往下.从下往上. 主轴 主轴的起点与终点定义了 ...
- ArcPy 创建图层空间索引
使用Python脚本进行图层的空间索引的创建. 附上Python代码: # -*- coding: utf-8 -*- # nightroad import sys import arcpy relo ...
- python 生成18年写过的博客词云
文章链接:https://mp.weixin.qq.com/s/NmJjTEADV6zKdT--2DXq9Q 回看18年,最有成就的就是有了自己的 博客网站,坚持记录,写文章,累计写了36篇了,从一开 ...
- IOS跟ANDROID的区别
大家总是会纠结哪个手机系统会更加适合自己,那就由小编我简要介绍一下IOS和安卓的区别吧! 运行机制:安卓是虚拟机运行机制,IOS是沙盒运行机制.这里再说明一下这两者的主要不同之处.安卓系统中应用程序的 ...
- ext组件的查询方式
1.使用id进行查询 (1)Ext.ComponentQuery.query("#mypanel") (2)Ext.getCmp("mypanel") 2.根据 ...
- java class反编译工具----JD-GUI
下载地址 http://jd.benow.ca/
- Linux(二)—— Unix&Linux 的基本概念
Linux(二)-- Unix&Linux 的基本概念 计算机 = 主机(host)+ 终端(terminal) 主机 = 内核 + 实用工具 内核(kernel) 当计算机启动时,计算机要经 ...
- 什么是validationQuery
validationQuery是用来验证数据库连接的查询语句,这个查询语句必须是至少返回一条数据的SELECT语句.每种数据库都有各自的验证语句,下表中收集了几种常见数据库的validationQue ...