问题描述

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的。比如”a” , “aaabbaaa”

之前去笔试了三星研究院,写算法题的时候限定了编程语言只能使用的头文件和库函数,这在很大程度上考察了一个程序员的单位时间生产力。比如java只能用util包,c/c++语言只能包含以下三个头文件:

stdio.h

malloc.h //ANSI标准建议使用stdlib.h头文件

iostream.h // 非标准输入输出,不需要命名空间

所以我想,针对这种高标准的要求,以后做leetcode系列时应该写三个版本,c语言版本不使用库函数,c++版本使用STL,python版本

解决方案

1.暴力方案(Brute Force)

对于字符串的每一个子串,都判断一下是不是回文字符串,完后返回最长的那一个

(Brute Force) [Time Limit Exceeded]

时间复杂度分析:O(n3),空间复杂度O(n),显然超时了。

#include "stdafx.h"
#include <iostream>
#include <string>
using namespace std;
char result[1000]={0}; bool isHuiwen(int begin,int end,char* s)
{
if (end==begin||end<begin)
{
return true;
}
if (s[begin]!=s[end])
{
return false;
}
return isHuiwen(begin+1,end-1,s);
} char* longestHuiwen(int length,char* s)
{
int begin = 0,end=0,sum=0;
for (int i=0;i<length;i++)
{
for (int j=0;j<=i;j++)
{
if (isHuiwen(j,i,s))
{
if (i-j>=sum)
{
sum = i -j;
begin = j;
end = i;
} } }
}
strncpy(result,s+begin,sum+1);//由0开始计数
return result;
} int _tmain(int argc, _TCHAR* argv[])
{
char* s = "abcabaaaabbacabbaa";
char* r_s = longestHuiwen(18,s);
return 0;
}

2.问题转换为求最长相似子串

Approach #1 (Longest Common Substring) [Accepted]

Common mistake

Some people will be tempted to come up with a quick solution, which is unfortunately flawed (however can be corrected easily):

Reverse S and become S′.

Find the longest common substring between S and S​′, which must also be the longest palindromic substring.This seemed to work, let’s see some examples below.

For example,

S=”caba”

S′=”abac”

The longest common substring between S and S​′ is ”aba”, which is the answer.

Let’s try another example:

S=”abacdfgdcaba”

S′=”abacdgfdcaba”

The longest common substring between S and S​′ is ”abacd”

Clearly, this is not a valid palindrome.

讨论帖子: http://bbs.csdn.net/topics/392005408

其他三种解法

Approach #3 (Dynamic Programming) [Accepted]

To improve over the brute force solution, we first observe how we can avoid unnecessary re-computation while validating palindromes. Consider the case

”ababa”

”ababa”. If we already knew that

”bab”

”bab” is a palindrome, it is obvious that

”ababa”

”ababa” must be a palindrome since the two left and right end letters are the same.

We define P(i,j)P(i,j) as following:

P(i,j)={true,

if the substring Si…Sj is a palindrome

false,

otherwise.

P(i,j)={true,if the substring Si…Sj is a palindromefalse,otherwise.

Therefore,

P(i, j) = ( P(i+1, j-1) \text{ and } S_i == S_j ) P(i,j)=(P(i+1,j−1) and S​i==S​j)

The base cases are:

P(i, i) = true P(i,i)=true

P(i, i+1) = ( S_i == S_{i+1} ) P(i,i+1)=(S​i ==Si+1)

This yields a straight forward DP solution, which we first initialize the one and two letters palindromes, and work our way up finding all three letters palindromes, and so on…

Complexity Analysis

Time complexity : O(n^2)O(n​2). This gives us a runtime complexity of O(n^2)O(n2).

Space complexity : O(n^2)O(n​2). It uses O(n^2)O(n2) space to store the table.

Additional Exercise

Could you improve the above space complexity further and how?

Approach #4 (Expand Around Center) [Accepted]

In fact, we could solve it in O(n^2)O(n​2 ) time using only constant space.

We observe that a palindrome mirrors around its center. Therefore, a palindrome can be expanded from its center, and there are only 2n - 12n−1 such centers.

You might be asking why there are 2n - 12n−1 but not nn centers? The reason is the center of a palindrome can be in between two letters. Such palindromes have even number of letters (such as

”abba””abba”) and its center are between the two ‘b”b’s.

public String longestPalindrome(String s) {

int start = 0, end = 0;

for (int i = 0; i < s.length(); i++) {

int len1 = expandAroundCenter(s, i, i);

int len2 = expandAroundCenter(s, i, i + 1);

int len = Math.max(len1, len2);

if (len > end - start) {

start = i - (len - 1) / 2;

end = i + len / 2;

}

}

return s.substring(start, end + 1);

}

private int expandAroundCenter(String s, int left, int right) {

int L = left, R = right;

while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {

L–;

R++;

}

return R - L - 1;

}

Complexity Analysis

Time complexity : O(n^2)O(n​2​​ ). Since expanding a palindrome around its center could take O(n)O(n) time, the overall complexity is O(n^2)O(n​2​​ ).

Space complexity : O(1)O(1).

Approach #5 (Manacher’s Algorithm) [Accepted]

There is even an O(n)O(n) algorithm called Manacher’s algorithm, explained here in detail. However, it is a non-trivial algorithm, and no one expects you to come up with this algorithm in a 45 minutes coding session. But, please go ahead and understand it, I promise it will be a lot of fun.

参考代码

c代码

char* longestPalindrome(char* s) {
int i,length=strlen(s);
char* new_s;
new_s=malloc(sizeof(char)*(2*length + 2));
new_s[0]='$';
new_s[1]='#'; for(i=0;i<length;i++)
{
*(new_s+2*i+2)=s[i];
*(new_s+2*i+3)='#'; }
int len=2*length + 2;
int* r;
r=malloc(sizeof(int)*len);
r[0]=0;
int center=1;
int max_right=0;
for(i=1;i<len;i++)
{
if(i<max_right)
{
if( (max_right-i)> r[2*center-i] )
r[i]=r[2*center-i];
else
r[i]=(max_right-i);
}
else r[i]=1;
while(new_s[i-r[i]]==new_s[i+r[i]] && i-r[i]>0 && i+r[i]<len)
{
r[i]++;
} if(i+r[i] > max_right)
{
center = i;
max_right = i+r[i]; } }
int max_r = 0;
int j=0;
for(i=1;i<len;i++)
{
if( max_r<r[i])
{
j=i;
max_r= r[i];
}
}
int m=(j-(max_r-2)-2)/2;
int n=(j+(max_r-2)-2)/2;
char *c;
c=malloc((max_r)*sizeof(char)); int x=0;
for(i=m;i<=n,x<max_r-1;i++)
{
c[x]=s[i];
x++;
}
*(c+max_r-1)='\0';
return c;
free(r);
free(new_s);
free(c); }

c++代码

string longestPalindrome(string s) {
if (s.empty()) return"";
if (s.size() == 1) return s;
int min_start = 0, max_len = 1;
for (int i = 0; i < s.size();) {
if (s.size() - i <= max_len / 2) break;
int j = i, k = i;
while (k < s.size()-1 && s[k+1] == s[k]) ++k; // Skip duplicate characters.
i = k+1;
while (k < s.size()-1 && j > 0 && s[k + 1] == s[j - 1]) { ++k; --j; } // Expand.int new_len = k - j + 1;
if (new_len > max_len) { min_start = j; max_len = new_len; }
}
return s.substr(min_start, max_len);
}

python参考代码


def longestPalindrome(self, s):
res = ""
for i in xrange(len(s)):
# odd case, like "aba"
tmp = self.helper(s, i, i)
if len(tmp) > len(res):
res = tmp
# even case, like "abba"
tmp = self.helper(s, i, i+1)
if len(tmp) > len(res):
res = tmp
return res # get the longest palindrome, l, r are the middle indexes
# from inner to outer
def helper(self, s, l, r):
while l >= 0 and r < len(s) and s[l] == s[r]:
l -= 1; r += 1
return s[l+1:r]

参考文献

http://articles.leetcode.com/longest-palindromic-substring-part-ii/

https://www.felix021.com/blog/read.php?2040

https://leetcode.com/articles/longest-palindromic-substring/

leetcode 5 Longest Palindromic Substring--最长回文字符串的更多相关文章

  1. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  2. [LeetCode] 5. Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  3. [leetcode]5. Longest Palindromic Substring最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  4. 转载-----Java Longest Palindromic Substring(最长回文字符串)

    转载地址:https://www.cnblogs.com/clnchanpin/p/6880322.html 假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic st ...

  5. Longest Palindromic Substring (最长回文字符串)——两种方法还没看,仍需认真看看

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  6. Java Longest Palindromic Substring(最长回文字符串)

    假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string.如aba,或者abba.本题是这种,给定输入一个字符串.要求输出一个子串,使得子串是最长的padro ...

  7. [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  8. 1. Longest Palindromic Substring ( 最长回文子串 )

    要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...

  9. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  10. 【LeetCode】5. Longest Palindromic Substring 最长回文子串

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...

随机推荐

  1. Spring之事务管理

        事务管理对于企业应用至关重要.它保证了用户的每一次操作都是可靠的,即便出现了异常的访问情况,也不至于破坏后台数据的完整性.     就像银行的自助取款机,通常都能正常为客户服务,但是也难免遇到 ...

  2. 超级好用的前端开发测试Chrome插件-WEB前端助手(FeHelper)

    WEB前端助手(FeHelper)插件概述 WEB前端助手:FeHelper是一款chrome浏览器插件.包含一些前端实用的工具,如字符串编解码.代码美化.JSON格式化查看.二维码生成器.编码规范检 ...

  3. [LeetCode] Split Linked List in Parts 拆分链表成部分

    Given a (singly) linked list with head node root, write a function to split the linked list into k c ...

  4. [LeetCode] Exclusive Time of Functions 函数的独家时间

    Given the running logs of n functions that are executed in a nonpreemptive single threaded CPU, find ...

  5. [LeetCode] Max Consecutive Ones 最大连续1的个数

    Given a binary array, find the maximum number of consecutive 1s in this array. Example 1: Input: [1, ...

  6. hive中No space left on device问题或者Java HotSpot(TM)64-Bit Server VM warning:Insufficient space for shared memory

  7. [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

  8. C++primer学习——左值和右值

    定义: 左值:用的是对象的身份 右值:用的是对象的值(内存) decltype: 当其作用于表达式时,如果求值结果是左值,那么返回一个引用 如果求值结果是右值,那么返回正常 int*p; declty ...

  9. 51nod 平均数(马拉松14)

    平均数 alpq654321 (命题人)   基准时间限制:4 秒 空间限制:131072 KB 分值: 80 LYK有一个长度为n的序列a. 他最近在研究平均数. 他甚至想知道所有区间的平均数,但是 ...

  10. ●BZOJ 4453 cys就是要拿英魂!

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4453 题解: 后缀数组,离线询问,栈看了一堆题解才看懂,太弱啦 ~ 如果对于一个区间[l,r ...