FFmpeg源代码简单分析:libswscale的sws_scale()
=====================================================
FFmpeg的库函数源代码分析文章列表:
【架构图】
【通用】
FFmpeg 源代码简单分析:av_register_all()
FFmpeg 源代码简单分析:avcodec_register_all()
FFmpeg 源代码简单分析:内存的分配和释放(av_malloc()、av_free()等)
FFmpeg 源代码简单分析:常见结构体的初始化和销毁(AVFormatContext,AVFrame等)
FFmpeg 源代码简单分析:av_find_decoder()和av_find_encoder()
FFmpeg 源代码简单分析:avcodec_open2()
FFmpeg 源代码简单分析:avcodec_close()
【解码】
图解FFMPEG打开媒体的函数avformat_open_input
FFmpeg 源代码简单分析:avformat_open_input()
FFmpeg 源代码简单分析:avformat_find_stream_info()
FFmpeg 源代码简单分析:av_read_frame()
FFmpeg 源代码简单分析:avcodec_decode_video2()
FFmpeg 源代码简单分析:avformat_close_input()
【编码】
FFmpeg 源代码简单分析:avformat_alloc_output_context2()
FFmpeg 源代码简单分析:avformat_write_header()
FFmpeg 源代码简单分析:avcodec_encode_video()
FFmpeg 源代码简单分析:av_write_frame()
FFmpeg 源代码简单分析:av_write_trailer()
【其它】
FFmpeg源代码简单分析:日志输出系统(av_log()等)
FFmpeg源代码简单分析:结构体成员管理系统-AVClass
FFmpeg源代码简单分析:结构体成员管理系统-AVOption
FFmpeg源代码简单分析:libswscale的sws_getContext()
FFmpeg源代码简单分析:libswscale的sws_scale()
FFmpeg源代码简单分析:libavdevice的avdevice_register_all()
FFmpeg源代码简单分析:libavdevice的gdigrab
【脚本】
【H.264】
=====================================================
本文继续上一篇文章《FFmpeg源代码分析:sws_getContext()》的内容,简单分析FFmpeg的图像处理(缩放,YUV/RGB格式转换)类库libswsscale中的sws_scale()函数。libswscale是一个主要用于处理图片像素数据的类库。可以完成图片像素格式的转换,图片的拉伸等工作。有关libswscale的使用可以参考文章:
《最简单的基于FFmpeg的libswscale的示例(YUV转RGB)》
该类库常用的函数数量很少,一般情况下就3个:
sws_getContext():初始化一个SwsContext。
sws_scale():处理图像数据。
sws_freeContext():释放一个SwsContext。
在分析sws_scale()的源代码之前,先简单回顾一下上篇文章中分析得到的两张图。
函数调用结构图
分析得到的libswscale的函数调用关系如下图所示。
Libswscale处理数据流程
Libswscale处理像素数据的流程可以概括为下图。
从图中可以看出,libswscale处理数据有两条最主要的方式:unscaled和scaled。unscaled用于处理不需要拉伸的像素数据(属于比较特殊的情况),scaled用于处理需要拉伸的像素数据。Unscaled只需要对图像像素格式进行转换;而Scaled则除了对像素格式进行转换之外,还需要对图像进行缩放。Scaled方式可以分成以下几个步骤:
XXX to YUV Converter:首相将数据像素数据转换为8bitYUV格式;
Horizontal scaler:水平拉伸图像,并且转换为15bitYUV;
Vertical scaler:垂直拉伸图像;
Output converter:转换为输出像素格式。
sws_scale()
sws_scale()是用于转换像素的函数。它的声明位于libswscale\swscale.h,如下所示。
/** * Scale the image slice in srcSlice and put the resulting scaled * slice in the image in dst. A slice is a sequence of consecutive * rows in an image. * * Slices have to be provided in sequential order, either in * top-bottom or bottom-top order. If slices are provided in * non-sequential order the behavior of the function is undefined. * * @param c the scaling context previously created with * sws_getContext() * @param srcSlice the array containing the pointers to the planes of * the source slice * @param srcStride the array containing the strides for each plane of * the source image * @param srcSliceY the position in the source image of the slice to * process, that is the number (counted starting from * zero) in the image of the first row of the slice * @param srcSliceH the height of the source slice, that is the number * of rows in the slice * @param dst the array containing the pointers to the planes of * the destination image * @param dstStride the array containing the strides for each plane of * the destination image * @return the height of the output slice */ int sws_scale(struct SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[]);
sws_scale()的定义位于libswscale\swscale.c,如下所示。
/** * swscale wrapper, so we don't need to export the SwsContext. * Assumes planar YUV to be in YUV order instead of YVU. */ int sws_scale(struct SwsContext *c, const uint8_t * const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[]) { int i, ret; const uint8_t *src2[4]; uint8_t *dst2[4]; uint8_t *rgb0_tmp = NULL; //检查输入参数 if (!srcStride || !dstStride || !dst || !srcSlice) { av_log(c, AV_LOG_ERROR, "One of the input parameters to sws_scale() is NULL, please check the calling code\n"); return 0; } if (c->cascaded_context[0] && srcSliceY == 0 && srcSliceH == c->cascaded_context[0]->srcH) { ret = sws_scale(c->cascaded_context[0], srcSlice, srcStride, srcSliceY, srcSliceH, c->cascaded_tmp, c->cascaded_tmpStride); if (ret < 0) return ret; ret = sws_scale(c->cascaded_context[1], (const uint8_t * const * )c->cascaded_tmp, c->cascaded_tmpStride, 0, c->cascaded_context[0]->dstH, dst, dstStride); return ret; } memcpy(src2, srcSlice, sizeof(src2)); memcpy(dst2, dst, sizeof(dst2)); // do not mess up sliceDir if we have a "trailing" 0-size slice if (srcSliceH == 0) return 0; //检查 if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) { av_log(c, AV_LOG_ERROR, "bad src image pointers\n"); return 0; } if (!check_image_pointers((const uint8_t* const*)dst, c->dstFormat, dstStride)) { av_log(c, AV_LOG_ERROR, "bad dst image pointers\n"); return 0; } if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) { av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n"); return 0; } if (c->sliceDir == 0) { if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1; } //使用调色板palette的特殊处理?应该不常见 if (usePal(c->srcFormat)) { for (i = 0; i < 256; i++) { int r, g, b, y, u, v, a = 0xff; if (c->srcFormat == AV_PIX_FMT_PAL8) { uint32_t p = ((const uint32_t *)(srcSlice[1]))[i]; a = (p >> 24) & 0xFF; r = (p >> 16) & 0xFF; g = (p >> 8) & 0xFF; b = p & 0xFF; } else if (c->srcFormat == AV_PIX_FMT_RGB8) { r = ( i >> 5 ) * 36; g = ((i >> 2) & 7) * 36; b = ( i & 3) * 85; } else if (c->srcFormat == AV_PIX_FMT_BGR8) { b = ( i >> 6 ) * 85; g = ((i >> 3) & 7) * 36; r = ( i & 7) * 36; } else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) { r = ( i >> 3 ) * 255; g = ((i >> 1) & 3) * 85; b = ( i & 1) * 255; } else if (c->srcFormat == AV_PIX_FMT_GRAY8 || c->srcFormat == AV_PIX_FMT_GRAY8A) { r = g = b = i; } else { av_assert1(c->srcFormat == AV_PIX_FMT_BGR4_BYTE); b = ( i >> 3 ) * 255; g = ((i >> 1) & 3) * 85; r = ( i & 1) * 255; } #define RGB2YUV_SHIFT 15 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT); u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT); v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT); c->pal_yuv[i]= y + (u<<8) + (v<<16) + ((unsigned)a<<24); switch (c->dstFormat) { case AV_PIX_FMT_BGR32: #if !HAVE_BIGENDIAN case AV_PIX_FMT_RGB24: #endif c->pal_rgb[i]= r + (g<<8) + (b<<16) + ((unsigned)a<<24); break; case AV_PIX_FMT_BGR32_1: #if HAVE_BIGENDIAN case AV_PIX_FMT_BGR24: #endif c->pal_rgb[i]= a + (r<<8) + (g<<16) + ((unsigned)b<<24); break; case AV_PIX_FMT_RGB32_1: #if HAVE_BIGENDIAN case AV_PIX_FMT_RGB24: #endif c->pal_rgb[i]= a + (b<<8) + (g<<16) + ((unsigned)r<<24); break; case AV_PIX_FMT_RGB32: #if !HAVE_BIGENDIAN case AV_PIX_FMT_BGR24: #endif default: c->pal_rgb[i]= b + (g<<8) + (r<<16) + ((unsigned)a<<24); } } } //Alpha的特殊处理? if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) { uint8_t *base; int x,y; rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32); if (!rgb0_tmp) return AVERROR(ENOMEM); base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp; for (y=0; y<srcSliceH; y++){ memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW); for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) { base[ srcStride[0]*y + x] = 0xFF; } } src2[0] = base; } //XYZ的特殊处理? if (c->srcXYZ && !(c->dstXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) { uint8_t *base; rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32); if (!rgb0_tmp) return AVERROR(ENOMEM); base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp; xyz12Torgb48(c, (uint16_t*)base, (const uint16_t*)src2[0], srcStride[0]/2, srcSliceH); src2[0] = base; } if (!srcSliceY && (c->flags & SWS_BITEXACT) && c->dither == SWS_DITHER_ED && c->dither_error[0]) for (i = 0; i < 4; i++) memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (c->dstW+2)); // copy strides, so they can safely be modified // sliceDir: 1 = top-to-bottom; -1 = bottom-to-top; if (c->sliceDir == 1) { // slices go from top to bottom int srcStride2[4] = { srcStride[0], srcStride[1], srcStride[2], srcStride[3] }; int dstStride2[4] = { dstStride[0], dstStride[1], dstStride[2], dstStride[3] }; reset_ptr(src2, c->srcFormat); reset_ptr((void*)dst2, c->dstFormat); /* reset slice direction at end of frame */ if (srcSliceY + srcSliceH == c->srcH) c->sliceDir = 0; //关键:调用 ret = c->swscale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2, dstStride2); } else { // slices go from bottom to top => we flip the image internally int srcStride2[4] = { -srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3] }; int dstStride2[4] = { -dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3] }; src2[0] += (srcSliceH - 1) * srcStride[0]; if (!usePal(c->srcFormat)) src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1]; src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2]; src2[3] += (srcSliceH - 1) * srcStride[3]; dst2[0] += ( c->dstH - 1) * dstStride[0]; dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1]; dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2]; dst2[3] += ( c->dstH - 1) * dstStride[3]; reset_ptr(src2, c->srcFormat); reset_ptr((void*)dst2, c->dstFormat); /* reset slice direction at end of frame */ if (!srcSliceY) c->sliceDir = 0; //关键:调用 ret = c->swscale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2); } if (c->dstXYZ && !(c->srcXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) { /* replace on the same data */ rgb48Toxyz12(c, (uint16_t*)dst2[0], (const uint16_t*)dst2[0], dstStride[0]/2, ret); } av_free(rgb0_tmp); return ret; }
从sws_scale()的定义可以看出,它封装了SwsContext中的swscale()(注意这个函数中间没有“_”)。函数最重要的一句代码就是“c->swscale()”。除此之外,函数还做了一些增加“兼容性”的一些处理。函数的主要步骤如下所示。
1.检查输入的图像参数的合理性。
这一步骤首先检查输入输出的参数是否为空,然后通过调用check_image_pointers()检查输入输出图像的内存是否正确分配。check_image_pointers()的定义如下所示。
static int check_image_pointers(const uint8_t * const data[4], enum AVPixelFormat pix_fmt, const int linesizes[4]) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); int i; for (i = 0; i < 4; i++) { int plane = desc->comp[i].plane; if (!data[plane] || !linesizes[plane]) return 0; } return 1; }
从check_image_pointers()的定义可以看出,在特定像素格式前提下,如果该像素格式应该包含像素的分量为空,就返回0,否则返回1。
2.如果输入像素数据中使用了“调色板”(palette),则进行一些相应的处理。这一步通过函数usePal()来判定。usePal()的定义如下。
static av_always_inline int usePal(enum AVPixelFormat pix_fmt) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); av_assert0(desc); return (desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL); }
从定义可以看出该函数通过判定AVPixFmtDescriptor中的flag是否包含AV_PIX_FMT_FLAG_PAL来断定像素格式是否使用了“调色板”。
3.其它一些特殊格式的处理,比如说Alpha,XYZ等的处理(这方面没有研究过)。
4.如果输入的图像的扫描方式是从底部到顶部的(一般情况下是从顶部到底部),则将图像进行反转。
5.调用SwsContext中的swscale()。
SwsContext中的swscale()
swscale这个变量的类型是SwsFunc,实际上就是一个函数指针。它是整个类库的核心。当我们从外部调用swscale()函数的时候,实际上就是调用了SwsContext中的这个名称为swscale的变量(注意外部函数接口和这个内部函数指针的名字是一样的,但不是一回事)。
可以看一下SwsFunc这个类型的定义:
typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[]);
可以看出SwsFunc的定义的参数类型和libswscale类库外部接口函数swscale()的参数类型一模一样。
在libswscale中,该指针的指向可以分成2种情况:
1.图像没有伸缩的时候,指向专有的像素转换函数
2.图像有伸缩的时候,指向swscale()函数。
在调用sws_getContext()初始化SwsContext的时候,会在其子函数sws_init_context()中对swscale指针进行赋值。如果图像没有进行拉伸,则会调用ff_get_unscaled_swscale()对其进行赋值;如果图像进行了拉伸,则会调用ff_getSwsFunc()对其进行赋值。下面分别看一下这2种情况。
没有拉伸--专有的像素转换函数
如果图像没有进行拉伸,则会调用ff_get_unscaled_swscale()对SwsContext的swscale进行赋值。上篇文章中记录了这个函数,在这里回顾一下。
ff_get_unscaled_swscale()
ff_get_unscaled_swscale()的定义如下。
void ff_get_unscaled_swscale(SwsContext *c) { const enum AVPixelFormat srcFormat = c->srcFormat; const enum AVPixelFormat dstFormat = c->dstFormat; const int flags = c->flags; const int dstH = c->dstH; int needsDither; needsDither = isAnyRGB(dstFormat) && c->dstFormatBpp < 24 && (c->dstFormatBpp < c->srcFormatBpp || (!isAnyRGB(srcFormat))); /* yv12_to_nv12 */ if ((srcFormat == AV_PIX_FMT_YUV420P || srcFormat == AV_PIX_FMT_YUVA420P) && (dstFormat == AV_PIX_FMT_NV12 || dstFormat == AV_PIX_FMT_NV21)) { c->swscale = planarToNv12Wrapper; } /* nv12_to_yv12 */ if (dstFormat == AV_PIX_FMT_YUV420P && (srcFormat == AV_PIX_FMT_NV12 || srcFormat == AV_PIX_FMT_NV21)) { c->swscale = nv12ToPlanarWrapper; } /* yuv2bgr */ if ((srcFormat == AV_PIX_FMT_YUV420P || srcFormat == AV_PIX_FMT_YUV422P || srcFormat == AV_PIX_FMT_YUVA420P) && isAnyRGB(dstFormat) && !(flags & SWS_ACCURATE_RND) && (c->dither == SWS_DITHER_BAYER || c->dither == SWS_DITHER_AUTO) && !(dstH & 1)) { c->swscale = ff_yuv2rgb_get_func_ptr(c); } if (srcFormat == AV_PIX_FMT_YUV410P && !(dstH & 3) && (dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P) && !(flags & SWS_BITEXACT)) { c->swscale = yvu9ToYv12Wrapper; } /* bgr24toYV12 */ if (srcFormat == AV_PIX_FMT_BGR24 && (dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P) && !(flags & SWS_ACCURATE_RND)) c->swscale = bgr24ToYv12Wrapper; /* RGB/BGR -> RGB/BGR (no dither needed forms) */ if (isAnyRGB(srcFormat) && isAnyRGB(dstFormat) && findRgbConvFn(c) && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)))) c->swscale = rgbToRgbWrapper; if ((srcFormat == AV_PIX_FMT_GBRP && dstFormat == AV_PIX_FMT_GBRAP) || (srcFormat == AV_PIX_FMT_GBRAP && dstFormat == AV_PIX_FMT_GBRP)) c->swscale = planarRgbToplanarRgbWrapper; #define isByteRGB(f) ( \ f == AV_PIX_FMT_RGB32 || \ f == AV_PIX_FMT_RGB32_1 || \ f == AV_PIX_FMT_RGB24 || \ f == AV_PIX_FMT_BGR32 || \ f == AV_PIX_FMT_BGR32_1 || \ f == AV_PIX_FMT_BGR24) if (srcFormat == AV_PIX_FMT_GBRP && isPlanar(srcFormat) && isByteRGB(dstFormat)) c->swscale = planarRgbToRgbWrapper; if ((srcFormat == AV_PIX_FMT_RGB48LE || srcFormat == AV_PIX_FMT_RGB48BE || srcFormat == AV_PIX_FMT_BGR48LE || srcFormat == AV_PIX_FMT_BGR48BE || srcFormat == AV_PIX_FMT_RGBA64LE || srcFormat == AV_PIX_FMT_RGBA64BE || srcFormat == AV_PIX_FMT_BGRA64LE || srcFormat == AV_PIX_FMT_BGRA64BE) && (dstFormat == AV_PIX_FMT_GBRP9LE || dstFormat == AV_PIX_FMT_GBRP9BE || dstFormat == AV_PIX_FMT_GBRP10LE || dstFormat == AV_PIX_FMT_GBRP10BE || dstFormat == AV_PIX_FMT_GBRP12LE || dstFormat == AV_PIX_FMT_GBRP12BE || dstFormat == AV_PIX_FMT_GBRP14LE || dstFormat == AV_PIX_FMT_GBRP14BE || dstFormat == AV_PIX_FMT_GBRP16LE || dstFormat == AV_PIX_FMT_GBRP16BE || dstFormat == AV_PIX_FMT_GBRAP16LE || dstFormat == AV_PIX_FMT_GBRAP16BE )) c->swscale = Rgb16ToPlanarRgb16Wrapper; if ((srcFormat == AV_PIX_FMT_GBRP9LE || srcFormat == AV_PIX_FMT_GBRP9BE || srcFormat == AV_PIX_FMT_GBRP16LE || srcFormat == AV_PIX_FMT_GBRP16BE || srcFormat == AV_PIX_FMT_GBRP10LE || srcFormat == AV_PIX_FMT_GBRP10BE || srcFormat == AV_PIX_FMT_GBRP12LE || srcFormat == AV_PIX_FMT_GBRP12BE || srcFormat == AV_PIX_FMT_GBRP14LE || srcFormat == AV_PIX_FMT_GBRP14BE || srcFormat == AV_PIX_FMT_GBRAP16LE || srcFormat == AV_PIX_FMT_GBRAP16BE) && (dstFormat == AV_PIX_FMT_RGB48LE || dstFormat == AV_PIX_FMT_RGB48BE || dstFormat == AV_PIX_FMT_BGR48LE || dstFormat == AV_PIX_FMT_BGR48BE || dstFormat == AV_PIX_FMT_RGBA64LE || dstFormat == AV_PIX_FMT_RGBA64BE || dstFormat == AV_PIX_FMT_BGRA64LE || dstFormat == AV_PIX_FMT_BGRA64BE)) c->swscale = planarRgb16ToRgb16Wrapper; if (av_pix_fmt_desc_get(srcFormat)->comp[0].depth_minus1 == 7 && isPackedRGB(srcFormat) && dstFormat == AV_PIX_FMT_GBRP) c->swscale = rgbToPlanarRgbWrapper; if (isBayer(srcFormat)) { if (dstFormat == AV_PIX_FMT_RGB24) c->swscale = bayer_to_rgb24_wrapper; else if (dstFormat == AV_PIX_FMT_YUV420P) c->swscale = bayer_to_yv12_wrapper; else if (!isBayer(dstFormat)) { av_log(c, AV_LOG_ERROR, "unsupported bayer conversion\n"); av_assert0(0); } } /* bswap 16 bits per pixel/component packed formats */ if (IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BAYER_BGGR16) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BAYER_RGGB16) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BAYER_GBRG16) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BAYER_GRBG16) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR444) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR48) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGRA64) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR555) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR565) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGRA64) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GRAY16) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YA16) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRP9) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRP10) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRP12) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRP14) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRP16) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GBRAP16) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB444) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB48) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGBA64) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB555) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB565) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGBA64) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_XYZ12) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV420P9) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV420P10) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV420P12) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV420P14) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV420P16) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV422P9) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV422P10) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV422P12) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV422P14) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV422P16) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV444P9) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV444P10) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV444P12) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV444P14) || IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_YUV444P16)) c->swscale = packed_16bpc_bswap; if (usePal(srcFormat) && isByteRGB(dstFormat)) c->swscale = palToRgbWrapper; if (srcFormat == AV_PIX_FMT_YUV422P) { if (dstFormat == AV_PIX_FMT_YUYV422) c->swscale = yuv422pToYuy2Wrapper; else if (dstFormat == AV_PIX_FMT_UYVY422) c->swscale = yuv422pToUyvyWrapper; } /* LQ converters if -sws 0 or -sws 4*/ if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)) { /* yv12_to_yuy2 */ if (srcFormat == AV_PIX_FMT_YUV420P || srcFormat == AV_PIX_FMT_YUVA420P) { if (dstFormat == AV_PIX_FMT_YUYV422) c->swscale = planarToYuy2Wrapper; else if (dstFormat == AV_PIX_FMT_UYVY422) c->swscale = planarToUyvyWrapper; } } if (srcFormat == AV_PIX_FMT_YUYV422 && (dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P)) c->swscale = yuyvToYuv420Wrapper; if (srcFormat == AV_PIX_FMT_UYVY422 && (dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P)) c->swscale = uyvyToYuv420Wrapper; if (srcFormat == AV_PIX_FMT_YUYV422 && dstFormat == AV_PIX_FMT_YUV422P) c->swscale = yuyvToYuv422Wrapper; if (srcFormat == AV_PIX_FMT_UYVY422 && dstFormat == AV_PIX_FMT_YUV422P) c->swscale = uyvyToYuv422Wrapper; #define isPlanarGray(x) (isGray(x) && (x) != AV_PIX_FMT_YA8 && (x) != AV_PIX_FMT_YA16LE && (x) != AV_PIX_FMT_YA16BE) /* simple copy */ if ( srcFormat == dstFormat || (srcFormat == AV_PIX_FMT_YUVA420P && dstFormat == AV_PIX_FMT_YUV420P) || (srcFormat == AV_PIX_FMT_YUV420P && dstFormat == AV_PIX_FMT_YUVA420P) || (isPlanarYUV(srcFormat) && isPlanarGray(dstFormat)) || (isPlanarYUV(dstFormat) && isPlanarGray(srcFormat)) || (isPlanarGray(dstFormat) && isPlanarGray(srcFormat)) || (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat) && c->chrDstHSubSample == c->chrSrcHSubSample && c->chrDstVSubSample == c->chrSrcVSubSample && dstFormat != AV_PIX_FMT_NV12 && dstFormat != AV_PIX_FMT_NV21 && srcFormat != AV_PIX_FMT_NV12 && srcFormat != AV_PIX_FMT_NV21)) { if (isPacked(c->srcFormat)) c->swscale = packedCopyWrapper; else /* Planar YUV or gray */ c->swscale = planarCopyWrapper; } if (ARCH_PPC) ff_get_unscaled_swscale_ppc(c); // if (ARCH_ARM) // ff_get_unscaled_swscale_arm(c); }
从代码中可以看出,它根据输入输出像素格式的不同,选择了不同的转换函数。例如YUV420P转换NV12的时候,就会将planarToNv12Wrapper()赋值给SwsContext的swscale指针。
有拉伸--swscale()
如果图像进行了拉伸,则会调用ff_getSwsFunc()对SwsContext的swscale进行赋值。上篇文章中记录了这个函数,在这里回顾一下。
SwsFunc ff_getSwsFunc(SwsContext *c) { sws_init_swscale(c); if (ARCH_PPC) ff_sws_init_swscale_ppc(c); if (ARCH_X86) ff_sws_init_swscale_x86(c); return swscale; }
注意,sws_init_context()对SwsContext的swscale进行赋值的语句是:
c->swscale = ff_getSwsFunc(c);
即把ff_getSwsFunc()的返回值赋值给SwsContext的swscale指针;而ff_getSwsFunc()的返回值是一个静态函数,名称就叫做“swscale”。
下面我们看一下这个swscale()静态函数的定义。
static int swscale(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[]) { /* load a few things into local vars to make the code more readable? * and faster */ //注意一下这些参数 //以亮度为准 const int srcW = c->srcW; const int dstW = c->dstW; const int dstH = c->dstH; //以色度为准 const int chrDstW = c->chrDstW; const int chrSrcW = c->chrSrcW; const int lumXInc = c->lumXInc; const int chrXInc = c->chrXInc; const enum AVPixelFormat dstFormat = c->dstFormat; const int flags = c->flags; int32_t *vLumFilterPos = c->vLumFilterPos; int32_t *vChrFilterPos = c->vChrFilterPos; int32_t *hLumFilterPos = c->hLumFilterPos; int32_t *hChrFilterPos = c->hChrFilterPos; int16_t *hLumFilter = c->hLumFilter; int16_t *hChrFilter = c->hChrFilter; int32_t *lumMmxFilter = c->lumMmxFilter; int32_t *chrMmxFilter = c->chrMmxFilter; const int vLumFilterSize = c->vLumFilterSize; const int vChrFilterSize = c->vChrFilterSize; const int hLumFilterSize = c->hLumFilterSize; const int hChrFilterSize = c->hChrFilterSize; int16_t **lumPixBuf = c->lumPixBuf; int16_t **chrUPixBuf = c->chrUPixBuf; int16_t **chrVPixBuf = c->chrVPixBuf; int16_t **alpPixBuf = c->alpPixBuf; const int vLumBufSize = c->vLumBufSize; const int vChrBufSize = c->vChrBufSize; uint8_t *formatConvBuffer = c->formatConvBuffer; uint32_t *pal = c->pal_yuv; yuv2planar1_fn yuv2plane1 = c->yuv2plane1; yuv2planarX_fn yuv2planeX = c->yuv2planeX; yuv2interleavedX_fn yuv2nv12cX = c->yuv2nv12cX; yuv2packed1_fn yuv2packed1 = c->yuv2packed1; yuv2packed2_fn yuv2packed2 = c->yuv2packed2; yuv2packedX_fn yuv2packedX = c->yuv2packedX; yuv2anyX_fn yuv2anyX = c->yuv2anyX; const int chrSrcSliceY = srcSliceY >> c->chrSrcVSubSample; const int chrSrcSliceH = FF_CEIL_RSHIFT(srcSliceH, c->chrSrcVSubSample); int should_dither = is9_OR_10BPS(c->srcFormat) || is16BPS(c->srcFormat); int lastDstY; /* vars which will change and which we need to store back in the context */ int dstY = c->dstY; int lumBufIndex = c->lumBufIndex; int chrBufIndex = c->chrBufIndex; int lastInLumBuf = c->lastInLumBuf; int lastInChrBuf = c->lastInChrBuf; if (!usePal(c->srcFormat)) { pal = c->input_rgb2yuv_table; } if (isPacked(c->srcFormat)) { src[0] = src[1] = src[2] = src[3] = src[0]; srcStride[0] = srcStride[1] = srcStride[2] = srcStride[3] = srcStride[0]; } srcStride[1] <<= c->vChrDrop; srcStride[2] <<= c->vChrDrop; DEBUG_BUFFERS("swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n", src[0], srcStride[0], src[1], srcStride[1], src[2], srcStride[2], src[3], srcStride[3], dst[0], dstStride[0], dst[1], dstStride[1], dst[2], dstStride[2], dst[3], dstStride[3]); DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n", srcSliceY, srcSliceH, dstY, dstH); DEBUG_BUFFERS("vLumFilterSize: %d vLumBufSize: %d vChrFilterSize: %d vChrBufSize: %d\n", vLumFilterSize, vLumBufSize, vChrFilterSize, vChrBufSize); if (dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15) { static int warnedAlready = 0; // FIXME maybe move this into the context if (flags & SWS_PRINT_INFO && !warnedAlready) { av_log(c, AV_LOG_WARNING, "Warning: dstStride is not aligned!\n" " ->cannot do aligned memory accesses anymore\n"); warnedAlready = 1; } } if ( (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15 || (uintptr_t)src[0]&15 || (uintptr_t)src[1]&15 || (uintptr_t)src[2]&15 || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15 || srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15 ) { static int warnedAlready=0; int cpu_flags = av_get_cpu_flags(); if (HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) && !warnedAlready){ av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speedloss\n"); warnedAlready=1; } } /* Note the user might start scaling the picture in the middle so this * will not get executed. This is not really intended but works * currently, so people might do it. */ if (srcSliceY == 0) { lumBufIndex = -1; chrBufIndex = -1; dstY = 0; lastInLumBuf = -1; lastInChrBuf = -1; } if (!should_dither) { c->chrDither8 = c->lumDither8 = sws_pb_64; } lastDstY = dstY; //逐行循环,一次循环代表处理一行 //注意dstY和dstH两个变量 for (; dstY < dstH; dstY++) { //色度的和亮度之间的关系 const int chrDstY = dstY >> c->chrDstVSubSample; uint8_t *dest[4] = { dst[0] + dstStride[0] * dstY, dst[1] + dstStride[1] * chrDstY, dst[2] + dstStride[2] * chrDstY, (CONFIG_SWSCALE_ALPHA && alpPixBuf) ? dst[3] + dstStride[3] * dstY : NULL, }; int use_mmx_vfilter= c->use_mmx_vfilter; // First line needed as input const int firstLumSrcY = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]); const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), dstH - 1)]); // First line needed as input const int firstChrSrcY = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]); // Last line needed as input int lastLumSrcY = FFMIN(c->srcH, firstLumSrcY + vLumFilterSize) - 1; int lastLumSrcY2 = FFMIN(c->srcH, firstLumSrcY2 + vLumFilterSize) - 1; int lastChrSrcY = FFMIN(c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1; int enough_lines; // handle holes (FAST_BILINEAR & weird filters) if (firstLumSrcY > lastInLumBuf) lastInLumBuf = firstLumSrcY - 1; if (firstChrSrcY > lastInChrBuf) lastInChrBuf = firstChrSrcY - 1; av_assert0(firstLumSrcY >= lastInLumBuf - vLumBufSize + 1); av_assert0(firstChrSrcY >= lastInChrBuf - vChrBufSize + 1); DEBUG_BUFFERS("dstY: %d\n", dstY); DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n", firstLumSrcY, lastLumSrcY, lastInLumBuf); DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n", firstChrSrcY, lastChrSrcY, lastInChrBuf); // Do we have enough lines in this slice to output the dstY line enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH && lastChrSrcY < FF_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample); if (!enough_lines) { lastLumSrcY = srcSliceY + srcSliceH - 1; lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1; DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n", lastLumSrcY, lastChrSrcY); } // Do horizontal scaling //水平拉伸 //亮度 while (lastInLumBuf < lastLumSrcY) { const uint8_t *src1[4] = { src[0] + (lastInLumBuf + 1 - srcSliceY) * srcStride[0], src[1] + (lastInLumBuf + 1 - srcSliceY) * srcStride[1], src[2] + (lastInLumBuf + 1 - srcSliceY) * srcStride[2], src[3] + (lastInLumBuf + 1 - srcSliceY) * srcStride[3], }; lumBufIndex++; av_assert0(lumBufIndex < 2 * vLumBufSize); av_assert0(lastInLumBuf + 1 - srcSliceY < srcSliceH); av_assert0(lastInLumBuf + 1 - srcSliceY >= 0); //关键:拉伸 hyscale(c, lumPixBuf[lumBufIndex], dstW, src1, srcW, lumXInc, hLumFilter, hLumFilterPos, hLumFilterSize, formatConvBuffer, pal, 0); if (CONFIG_SWSCALE_ALPHA && alpPixBuf) hyscale(c, alpPixBuf[lumBufIndex], dstW, src1, srcW, lumXInc, hLumFilter, hLumFilterPos, hLumFilterSize, formatConvBuffer, pal, 1); lastInLumBuf++; DEBUG_BUFFERS("\t\tlumBufIndex %d: lastInLumBuf: %d\n", lumBufIndex, lastInLumBuf); } //水平拉伸 //色度 while (lastInChrBuf < lastChrSrcY) { const uint8_t *src1[4] = { src[0] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[0], src[1] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[1], src[2] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[2], src[3] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[3], }; chrBufIndex++; av_assert0(chrBufIndex < 2 * vChrBufSize); av_assert0(lastInChrBuf + 1 - chrSrcSliceY < (chrSrcSliceH)); av_assert0(lastInChrBuf + 1 - chrSrcSliceY >= 0); // FIXME replace parameters through context struct (some at least) //关键:拉伸 if (c->needs_hcscale) hcscale(c, chrUPixBuf[chrBufIndex], chrVPixBuf[chrBufIndex], chrDstW, src1, chrSrcW, chrXInc, hChrFilter, hChrFilterPos, hChrFilterSize, formatConvBuffer, pal); lastInChrBuf++; DEBUG_BUFFERS("\t\tchrBufIndex %d: lastInChrBuf: %d\n", chrBufIndex, lastInChrBuf); } // wrap buf index around to stay inside the ring buffer if (lumBufIndex >= vLumBufSize) lumBufIndex -= vLumBufSize; if (chrBufIndex >= vChrBufSize) chrBufIndex -= vChrBufSize; if (!enough_lines) break; // we can't output a dstY line so let's try with the next slice #if HAVE_MMX_INLINE updateMMXDitherTables(c, dstY, lumBufIndex, chrBufIndex, lastInLumBuf, lastInChrBuf); #endif if (should_dither) { c->chrDither8 = ff_dither_8x8_128[chrDstY & 7]; c->lumDither8 = ff_dither_8x8_128[dstY & 7]; } if (dstY >= dstH - 2) { /* hmm looks like we can't use MMX here without overwriting * this array's tail */ ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX, &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX); use_mmx_vfilter= 0; } { const int16_t **lumSrcPtr = (const int16_t **)(void*) lumPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize; const int16_t **chrUSrcPtr = (const int16_t **)(void*) chrUPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize; const int16_t **chrVSrcPtr = (const int16_t **)(void*) chrVPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize; const int16_t **alpSrcPtr = (CONFIG_SWSCALE_ALPHA && alpPixBuf) ? (const int16_t **)(void*) alpPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize : NULL; int16_t *vLumFilter = c->vLumFilter; int16_t *vChrFilter = c->vChrFilter; if (isPlanarYUV(dstFormat) || (isGray(dstFormat) && !isALPHA(dstFormat))) { // YV12 like const int chrSkipMask = (1 << c->chrDstVSubSample) - 1; vLumFilter += dstY * vLumFilterSize; vChrFilter += chrDstY * vChrFilterSize; // av_assert0(use_mmx_vfilter != ( // yuv2planeX == yuv2planeX_10BE_c // || yuv2planeX == yuv2planeX_10LE_c // || yuv2planeX == yuv2planeX_9BE_c // || yuv2planeX == yuv2planeX_9LE_c // || yuv2planeX == yuv2planeX_16BE_c // || yuv2planeX == yuv2planeX_16LE_c // || yuv2planeX == yuv2planeX_8_c) || !ARCH_X86); if(use_mmx_vfilter){ vLumFilter= (int16_t *)c->lumMmxFilter; vChrFilter= (int16_t *)c->chrMmxFilter; } //输出一行水平拉伸过的像素 //亮度 //是否垂直拉伸? if (vLumFilterSize == 1) { //亮度-不垂直拉伸-分量模式(planar)-输出一行水平拉伸的像素 yuv2plane1(lumSrcPtr[0], dest[0], dstW, c->lumDither8, 0); } else { //亮度-垂直拉伸-分量模式(planar)-输出一行水平拉伸的像素 yuv2planeX(vLumFilter, vLumFilterSize, lumSrcPtr, dest[0], dstW, c->lumDither8, 0); } //色度 //是否垂直拉伸? if (!((dstY & chrSkipMask) || isGray(dstFormat))) { if (yuv2nv12cX) { yuv2nv12cX(c, vChrFilter, vChrFilterSize, chrUSrcPtr, chrVSrcPtr, dest[1], chrDstW); } else if (vChrFilterSize == 1) { //色度-不垂直拉伸-分量模式(planar)-输出一行水平拉伸的像素 //注意是2个分量 yuv2plane1(chrUSrcPtr[0], dest[1], chrDstW, c->chrDither8, 0); yuv2plane1(chrVSrcPtr[0], dest[2], chrDstW, c->chrDither8, 3); } else { //色度-垂直拉伸-分量模式(planar)-输出一行水平拉伸的像素 //注意是2个分量 yuv2planeX(vChrFilter, vChrFilterSize, chrUSrcPtr, dest[1], chrDstW, c->chrDither8, 0); yuv2planeX(vChrFilter, vChrFilterSize, chrVSrcPtr, dest[2], chrDstW, c->chrDither8, use_mmx_vfilter ? (c->uv_offx2 >> 1) : 3); } } if (CONFIG_SWSCALE_ALPHA && alpPixBuf) { if(use_mmx_vfilter){ vLumFilter= (int16_t *)c->alpMmxFilter; } if (vLumFilterSize == 1) { yuv2plane1(alpSrcPtr[0], dest[3], dstW, c->lumDither8, 0); } else { yuv2planeX(vLumFilter, vLumFilterSize, alpSrcPtr, dest[3], dstW, c->lumDither8, 0); } } } else if (yuv2packedX) { av_assert1(lumSrcPtr + vLumFilterSize - 1 < (const int16_t **)lumPixBuf + vLumBufSize * 2); av_assert1(chrUSrcPtr + vChrFilterSize - 1 < (const int16_t **)chrUPixBuf + vChrBufSize * 2); if (c->yuv2packed1 && vLumFilterSize == 1 && vChrFilterSize <= 2) { // unscaled RGB int chrAlpha = vChrFilterSize == 1 ? 0 : vChrFilter[2 * dstY + 1]; //不垂直拉伸-打包模式(packed)-输出一行水平拉伸的像素 yuv2packed1(c, *lumSrcPtr, chrUSrcPtr, chrVSrcPtr, alpPixBuf ? *alpSrcPtr : NULL, dest[0], dstW, chrAlpha, dstY); } else if (c->yuv2packed2 && vLumFilterSize == 2 && vChrFilterSize == 2) { // bilinear upscale RGB int lumAlpha = vLumFilter[2 * dstY + 1]; int chrAlpha = vChrFilter[2 * dstY + 1]; lumMmxFilter[2] = lumMmxFilter[3] = vLumFilter[2 * dstY] * 0x10001; chrMmxFilter[2] = chrMmxFilter[3] = vChrFilter[2 * chrDstY] * 0x10001; yuv2packed2(c, lumSrcPtr, chrUSrcPtr, chrVSrcPtr, alpPixBuf ? alpSrcPtr : NULL, dest[0], dstW, lumAlpha, chrAlpha, dstY); } else { // general RGB //垂直拉伸-打包模式(packed)-输出一行水平拉伸的像素 yuv2packedX(c, vLumFilter + dstY * vLumFilterSize, lumSrcPtr, vLumFilterSize, vChrFilter + dstY * vChrFilterSize, chrUSrcPtr, chrVSrcPtr, vChrFilterSize, alpSrcPtr, dest[0], dstW, dstY); } } else { av_assert1(!yuv2packed1 && !yuv2packed2); yuv2anyX(c, vLumFilter + dstY * vLumFilterSize, lumSrcPtr, vLumFilterSize, vChrFilter + dstY * vChrFilterSize, chrUSrcPtr, chrVSrcPtr, vChrFilterSize, alpSrcPtr, dest, dstW, dstY); } } } if (isPlanar(dstFormat) && isALPHA(dstFormat) && !alpPixBuf) { int length = dstW; int height = dstY - lastDstY; if (is16BPS(dstFormat) || isNBPS(dstFormat)) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat); fillPlane16(dst[3], dstStride[3], length, height, lastDstY, 1, desc->comp[3].depth_minus1, isBE(dstFormat)); } else fillPlane(dst[3], dstStride[3], length, height, lastDstY, 255); } #if HAVE_MMXEXT_INLINE if (av_get_cpu_flags() & AV_CPU_FLAG_MMXEXT) __asm__ volatile ("sfence" ::: "memory"); #endif emms_c(); /* store changed local vars back in the context */ c->dstY = dstY; c->lumBufIndex = lumBufIndex; c->chrBufIndex = chrBufIndex; c->lastInLumBuf = lastInLumBuf; c->lastInChrBuf = lastInChrBuf; return dstY - lastDstY; }
可以看出swscale()是一行一行的进行图像缩放工作的。其中每行数据的处理按照“先水平拉伸,然后垂直拉伸”的方式进行处理。具体的实现函数如下所示:
1. 水平拉伸
a) 亮度水平拉伸:hyscale()
b) 色度水平拉伸:hcscale()
2. 垂直拉伸
a) Planar
i. 亮度垂直拉伸-不拉伸:yuv2plane1()
ii. 亮度垂直拉伸-拉伸:yuv2planeX()
iii. 色度垂直拉伸-不拉伸:yuv2plane1()
iv. 色度垂直拉伸-拉伸:yuv2planeX()
b) Packed
i. 垂直拉伸-不拉伸:yuv2packed1()
ii. 垂直拉伸-拉伸:yuv2packedX()
下面具体看看这几个函数的定义。
hyscale()
水平亮度拉伸函数hyscale()的定义位于libswscale\swscale.c,如下所示。
// *** horizontal scale Y line to temp buffer static av_always_inline void hyscale(SwsContext *c, int16_t *dst, int dstWidth, const uint8_t *src_in[4], int srcW, int xInc, const int16_t *hLumFilter, const int32_t *hLumFilterPos, int hLumFilterSize, uint8_t *formatConvBuffer, uint32_t *pal, int isAlpha) { void (*toYV12)(uint8_t *, const uint8_t *, const uint8_t *, const uint8_t *, int, uint32_t *) = isAlpha ? c->alpToYV12 : c->lumToYV12; void (*convertRange)(int16_t *, int) = isAlpha ? NULL : c->lumConvertRange; const uint8_t *src = src_in[isAlpha ? 3 : 0]; if (toYV12) { toYV12(formatConvBuffer, src, src_in[1], src_in[2], srcW, pal); src = formatConvBuffer; } else if (c->readLumPlanar && !isAlpha) { //读取 c->readLumPlanar(formatConvBuffer, src_in, srcW, c->input_rgb2yuv_table); //赋值 src = formatConvBuffer; } else if (c->readAlpPlanar && isAlpha) { c->readAlpPlanar(formatConvBuffer, src_in, srcW, NULL); src = formatConvBuffer; } if (!c->hyscale_fast) { //亮度-水平拉伸 c->hyScale(c, dst, dstWidth, src, hLumFilter, hLumFilterPos, hLumFilterSize); } else { // fast bilinear upscale / crap downscale c->hyscale_fast(c, dst, dstWidth, src, srcW, xInc); } //如果需要取值范围的转换(0-255和16-235之间) if (convertRange) convertRange(dst, dstWidth); }
从hyscale()的源代码可以看出,它的流程如下所示。
1.转换成Y(亮度)
如果SwsContext的toYV12()函数存在,调用用该函数将数据转换为Y。如果该函数不存在,则调用SwsContext的readLumPlanar()读取Y。
2.拉伸
拉伸通过SwsContext的hyScale ()函数完成。如果存在hyscale_fast()方法的话,系统会优先调用hyscale_fast()。
3.转换范围(如果需要的话)
如果需要转换亮度的取值范围(例如需要进行16-235的MPEG标准与0-255的JPEG标准之间的转换),则会调用SwsContext的lumConvertRange ()函数。
上述几个步骤的涉及到的函数在上一篇文章中几经介绍过了,在这里重复一下。
toYV12() [SwsContext ->lumToYV12()]
toYV12()的实现函数是在ff_sws_init_input_funcs()中初始化的。在这里举几种具体的输入像素格式。
输入格式为YUYV422/ YVYU422
ff_sws_init_input_funcs()中,输入像素格式为YUYV422/ YVYU422的时候,toYV12()指向yuy2ToY_c()函数。源代码如下所示。
case AV_PIX_FMT_YUYV422: case AV_PIX_FMT_YVYU422: case AV_PIX_FMT_YA8: c->lumToYV12 = yuy2ToY_c; break;
yuy2ToY_c()的定义如下所示。
static void yuy2ToY_c(uint8_t *dst, const uint8_t *src, const uint8_t *unused1, const uint8_t *unused2, int width, uint32_t *unused) { int i; for (i = 0; i < width; i++) dst[i] = src[2 * i]; }
从yuy2ToY_c()的定义可以看出,该函数取出了所有的Y值(Y值在src[]数组中的下标为偶数)。
输入格式为RGB24
ff_sws_init_input_funcs()中,输入像素格式为RGB24的时候,toYV12()指向yuy2ToY_c()函数。源代码如下所示。
case AV_PIX_FMT_RGB24: c->lumToYV12 = rgb24ToY_c; break;
rgb24ToY_c()的定义如下所示。
static void rgb24ToY_c(uint8_t *_dst, const uint8_t *src, const uint8_t *unused1, const uint8_t *unused2, int width, uint32_t *rgb2yuv) { int16_t *dst = (int16_t *)_dst; int32_t ry = rgb2yuv[RY_IDX], gy = rgb2yuv[GY_IDX], by = rgb2yuv[BY_IDX]; int i; for (i = 0; i < width; i++) { int r = src[i * 3 + 0]; int g = src[i * 3 + 1]; int b = src[i * 3 + 2]; dst[i] = ((ry*r + gy*g + by*b + (32<<(RGB2YUV_SHIFT-1)) + (1<<(RGB2YUV_SHIFT-7)))>>(RGB2YUV_SHIFT-6)); } }
从rgb24ToY_c()的定义可以看出,该函数通过R、G、B三个元素计算Y的值。其中R、G、B的系数取自于数组rgb2yuv[](这个地方还没有研究);RGB2YUV_SHIFT似乎代表了转换后YUV的位数,取值为15(这个地方也还没有深入看)。
SwsContext -> hyScale ()
SwsContext -> hyScale ()的实现函数是在sws_init_swscale ()中初始化的。可以回顾一下sws_init_swscale ()的定义,如下所示。
static av_cold void sws_init_swscale(SwsContext *c) { enum AVPixelFormat srcFormat = c->srcFormat; ff_sws_init_output_funcs(c, &c->yuv2plane1, &c->yuv2planeX, &c->yuv2nv12cX, &c->yuv2packed1, &c->yuv2packed2, &c->yuv2packedX, &c->yuv2anyX); ff_sws_init_input_funcs(c); if (c->srcBpc == 8) { if (c->dstBpc <= 14) { c->hyScale = c->hcScale = hScale8To15_c; if (c->flags & SWS_FAST_BILINEAR) { c->hyscale_fast = ff_hyscale_fast_c; c->hcscale_fast = ff_hcscale_fast_c; } } else { c->hyScale = c->hcScale = hScale8To19_c; } } else { c->hyScale = c->hcScale = c->dstBpc > 14 ? hScale16To19_c : hScale16To15_c; } ff_sws_init_range_convert(c); if (!(isGray(srcFormat) || isGray(c->dstFormat) || srcFormat == AV_PIX_FMT_MONOBLACK || srcFormat == AV_PIX_FMT_MONOWHITE)) c->needs_hcscale = 1; }
从sws_init_swscale ()的定义可以看出,ff_sws_init_input_funcs()和ff_sws_init_range_convert()之间的代码完成了hyScale()的初始化。根据srcBpc和dstBpc取值的不同,有几种不同的拉伸函数。根据我的理解,srcBpc代表了输入的每个像素单个分量的位数,dstBpc代表了输出的每个像素单个分量的位数。最常见的像素单个分量的位数是8位。从代码中可以看出,在输入像素单个分量的位数为8位,而且输出像素单个分量的位数也为8位的时候,SwsContext 的 hyScale ()会指向hScale8To15_c()函数。
hScale8To15_c()
hScale8To15_c()的定义如下所示。有关这个方面的代码还没有详细研究,日后再作补充。
// bilinear / bicubic scaling static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize) { int i; for (i = 0; i < dstW; i++) { int j; int srcPos = filterPos[i]; int val = 0; for (j = 0; j < filterSize; j++) { val += ((int)src[srcPos + j]) * filter[filterSize * i + j]; } dst[i] = FFMIN(val >> 7, (1 << 15) - 1); // the cubic equation does overflow ... } }
lumConvertRange () [SwsContext -> lumConvertRange()]
SwsContext -> hyScale ()的实现函数是在ff_sws_init_range_convert()中初始化的。可以回顾一下ff_sws_init_range_convert ()的定义,如下所示。
av_cold void ff_sws_init_range_convert(SwsContext *c) { c->lumConvertRange = NULL; c->chrConvertRange = NULL; if (c->srcRange != c->dstRange && !isAnyRGB(c->dstFormat)) { if (c->dstBpc <= 14) { if (c->srcRange) { c->lumConvertRange = lumRangeFromJpeg_c; c->chrConvertRange = chrRangeFromJpeg_c; } else { c->lumConvertRange = lumRangeToJpeg_c; c->chrConvertRange = chrRangeToJpeg_c; } } else { if (c->srcRange) { c->lumConvertRange = lumRangeFromJpeg16_c; c->chrConvertRange = chrRangeFromJpeg16_c; } else { c->lumConvertRange = lumRangeToJpeg16_c; c->chrConvertRange = chrRangeToJpeg16_c; } } } }
SwsContext 的lumConvertRange()函数主要用于JPEG标准像素取值范围(0-255)和MPEG标准像素取值范围(16-235)之间的转换。有关这方面的分析在上一篇文章中一斤详细叙述过,在这里不再重复。简单看一下其中的一个函数。
lumRangeFromJpeg_c()
把亮度从JPEG标准转换为MPEG标准(0-255转换为16-235)的函数lumRangeFromJpeg_c()的定义如下所示。
static void lumRangeFromJpeg_c(int16_t *dst, int width) { int i; for (i = 0; i < width; i++) dst[i] = (dst[i] * 14071 + 33561947) >> 14; }
其实这个函数就是做了一个(0-255)到(16-235)的映射。它将亮度值“0”映射成“16”,“255”映射成“235”,因此我们可以代入一个“255”看看转换后的数值是否为“235”。在这里需要注意,dst中存储的像素数值是15bit的亮度值。因此我们需要将8bit的数值“255”左移7位后带入。经过计算,255左移7位后取值为32640,计算后得到的数值为30080,右移7位后得到的8bit亮度值即为235。
hcscale()
水平色度拉伸函数hcscale()的定义位于libswscale\swscale.c,如下所示。
static av_always_inline void hcscale(SwsContext *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src_in[4], int srcW, int xInc, const int16_t *hChrFilter, const int32_t *hChrFilterPos, int hChrFilterSize, uint8_t *formatConvBuffer, uint32_t *pal) { const uint8_t *src1 = src_in[1], *src2 = src_in[2]; if (c->chrToYV12) { uint8_t *buf2 = formatConvBuffer + FFALIGN(srcW*2+78, 16); //转换 c->chrToYV12(formatConvBuffer, buf2, src_in[0], src1, src2, srcW, pal); src1= formatConvBuffer; src2= buf2; } else if (c->readChrPlanar) { uint8_t *buf2 = formatConvBuffer + FFALIGN(srcW*2+78, 16); //读取 c->readChrPlanar(formatConvBuffer, buf2, src_in, srcW, c->input_rgb2yuv_table); //赋值 src1 = formatConvBuffer; src2 = buf2; } if (!c->hcscale_fast) { //色度-水平拉伸 c->hcScale(c, dst1, dstWidth, src1, hChrFilter, hChrFilterPos, hChrFilterSize); c->hcScale(c, dst2, dstWidth, src2, hChrFilter, hChrFilterPos, hChrFilterSize); } else { // fast bilinear upscale / crap downscale c->hcscale_fast(c, dst1, dst2, dstWidth, src1, src2, srcW, xInc); } //如果需要取值范围的转换(0-255和16-235之间) if (c->chrConvertRange) c->chrConvertRange(dst1, dst2, dstWidth); }
从hcscale()的源代码可以看出,它的流程如下所示。
1.转换成UV
该功能通过SwsContext的chrToYV12 ()函数完成。如果该函数不存在,则调用SwsContext的readChrPlanar ()读取UV。
2.拉伸
拉伸通过SwsContext的hcScale ()函数完成。如果存在hcscale_fast()方法的话,系统会优先调用hcscale_fast ()。
3.转换范围(如果需要的话)
如果需要转换色度的取值范围(例如色度取值范围从0-255转换为16-240),则会调用SwsContext的chrConvertRange ()函数。
hcscale()的原理和hyScale ()的原理基本上是一样的,在这里既不再详细研究了。
还有几个函数没有分析,但是时间有限,以后有机会再进行补充。
雷霄骅
leixiaohua1020@126.com
http://blog.csdn.net/leixiaohua1020
FFmpeg源代码简单分析:libswscale的sws_scale()的更多相关文章
- FFmpeg源代码简单分析:libswscale的sws_getContext()
===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...
- FFmpeg源代码简单分析:libavdevice的gdigrab
===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...
- FFmpeg源代码简单分析:libavdevice的avdevice_register_all()
===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...
- FFmpeg源代码简单分析:configure
===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...
- FFmpeg源代码简单分析:makefile
===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...
- FFmpeg源代码简单分析:结构体成员管理系统-AVOption
===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...
- FFmpeg源代码简单分析:结构体成员管理系统-AVClass
===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...
- FFmpeg源代码简单分析:日志输出系统(av_log()等)
===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...
- FFmpeg源代码简单分析:avcodec_close()
===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...
随机推荐
- hdu 1166 线段树(sum+单点修改)
敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- [bzoj4236]JOIOJI
来自FallDream的博客,未经允许,请勿转载,谢谢. JOIOJI桑是JOI君的叔叔.“JOIOJI”这个名字是由“J.O.I”三个字母各两个构成的. 最近,JOIOJI桑有了一个孩子.JOIOJ ...
- ubuntu Linux下C语言open函数打开或创建文件与read,write函数详细讲解
open(打开文件) 相关函数 read,write,fcntl,close,link,stat,umask,unlink,fopen 表头文件 #include<sys/types.h> ...
- HL7工具安装步骤
下载目录:http://gforge.hl7.org/gf/ 说明:在安装HL7V3学习工具之前,确保本机已安装IIS服务和Access数据库. 各种软件见附件. 1.下载安装步骤 RIM模型下载 ...
- Java8的重要新特性
一.Lambda表达式 java8中Lambda表达式的书写方式: (参数) -> 表达式 (参数) -> 单行语句 (参数) -> { 语句 } 1.Lambda遍历List和Ma ...
- Cisco Port-Channel 设置(链路聚合)
Port-Channel 的在实际工作中的主要作用是将两个或多个端口捆绑成为一个虚拟通道. interface Port-channel1 description port(1/0/5-6) swit ...
- 读书笔记-《Maven实战》-2018/4/18
第五章:坐标和依赖 1.每个依赖中可以包含的元素有: groupId,artifactId,version: 这三个元素是Maven项目最重要的元素.Maven需要根据这三个坐标找到需要的依赖. ty ...
- Vue-起步篇:Vue与React、 Angular的区别
毋庸置疑,Vue.React. Angular这三个是现在比较火的前端框架.这几个框架都各有所长,选择学习哪种就得看个人喜好或者实际项目了.相比之下, Vue 是轻量级且容易学习掌握的. 1.Vue和 ...
- web领域的实时推送技术-WebSocket
WebSocket protocol 是HTML5一种新的协议.它实现了浏览器与服务器全双工通信(full-duplex),即是所谓的及时推送技术. 在此之前,很多网站为了实现及时推送技术通常采用的是 ...
- python学习之路前端-HTML
HTML概述 HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,他是一种制作万维网页面标准语言(标记).相当于定义统一的一套规则,大家都来遵守他,这样就可以 ...