一、两个简单概念长连接与短连接:
1、长连接

Client方与Server方先建立通讯连接,连接建立后不断开, 然后再进行报文发送和接收。

2、短连接

Client方与Server每进行一次报文收发交易时才进行通讯连接,交易完毕后立即断开连接。此种方式常用于一点对多点 通讯,比如多个Client连接一个Server。

二 、什么时候需要考虑粘包问题?

如果利用tcp每次发送数据,就与对方建立连接,然后双方发送完一段数据后,就关闭连接,这样就不会出现粘包问题(因为只有一种包结构,类似于http协议)。关闭连接主要要双方都发送close连接(参考tcp关闭协议)。如:A需要发送一段字符串给B,那么A与B建立连接,然后发送双方都默认好的协议字符如"hello give me sth abour yourself",然后B收到报文后,就将缓冲区数据接收,然后关闭连接,这样粘包问题不用考虑到,因为大家都知道是发送一段字符。

如果发送数据无结构,如文件传输,这样发送方只管发送,接收方只管接收存储就ok,也不用考虑粘包。

如果双方建立连接,需要在连接后一段时间内发送不同结构数据,如连接后,有好几种结构
 1)"hello give me sth abour yourself"
 2)"Don't give me sth abour yourself"
      那这样的话,如果发送方连续发送这个两个包出去,接收方一次接收可能会是"hello give me sth abour yourselfDon't give me sth abour yourself" 这样接收方就傻了,到底是要干嘛?不知道,因为协议没有规定这么诡异的字符串,所以要处理把它分包,怎么分也需要双方组织一个比较好的包结构,所以一般可能会在头加一个数据长度之类的包,以确保接收。

三、 粘包出现原因:

在TCP传输中会出现粘包,UDP不会出现粘包,因为它有消息边界。

  • 发送端需要等发送缓冲区满才发送出去,造成粘包;
  • 接收方不及时接收缓冲区的包,造成多个包接收。

四、解决办法:

为了避免粘包现象,可采取以下三种措施:

  • 对于发送方引起的粘包现象,用户可通过编程设置来避免,TCP提供了强制数据立即传送的操作指令push,TCP软件收到该操作指令后,就立即将本段数据发送出去,而不必等待发送缓冲区满;
  • 对于接收方引起的粘包,则可通过优化程序设计、精简接收进程工作量、提高接收进程优先级等措施,使其及时接收数据,从而尽量避免出现粘包现象;
  • 由接收方控制,将一包数据按结构字段,人为控制分多次接收,然后合并,通过这种手段来避免粘包。

以上提到的三种措施,都有其不足之处:

第一种编程设置方法虽然可以避免发送方引起的粘包,但它关闭了优化算法,降低了网络发送效率,影响应用程序的性能,一般不建议使用。

第二种方法只能减少出现粘包的可能性,但并不能完全避免粘包,当发送频率较高时,或由于网络突发可能使某个时间段数据包到达接收方较快,接收方还是有可能来不及接收,从而导致粘包。

第三种方法虽然避免了粘包,但应用程序的效率较低,对实时应用的场合不适合。

一个包没有固定长度,以太网限制在46-1500字节,1500就是以太网的MTU,超过这个量,TCP会为IP数据报设置偏移量进行分片传输,现在一般可允许应用层设置8k(NTFS系)的缓冲区,8k的数据由底层分片,而应用看来只是一次发送。Socket本身分为两种,流(TCP)和数据报(UDP),你的问题针对这两种不同使用而结论不一样。甚至还和你是用阻塞、还是非阻塞Socket来编程有关。

1、通信长度,这个是你自己决定的,没有系统强迫你要发多大的包,实际应该根据需求和网络状况来决定。对于TCP,这个长度可以大点,但要知道,Socket内部默认的收发缓冲区大小大概是8K,你可以用setsockopt来改变。但对于UDP,就不要太大,一般在1024至10K。注意一点,你无论发多大的包,IP层和链路层都会把你的包进行分片发送一般局域网就是1500左右,广域网就只有几十字节。分片后的包将经过不同的路由到达接收方,对于UDP而言,要是其中一个分片丢失,那么接收方的IP层将把整个发送包丢弃,这就形成丢包。显然,要是一个UDP发包佷大,它被分片后,链路层丢失分片的几率就佷大,你这个UDP包,就佷容易丢失,但是太小又影响效率。最好可以配置这个值,以根据不同的环境来调整到最佳状态。

       send()函数返回了实际发送的长度,在网络不断的情况下,它绝不会返回(发送失败的)错误,最多就是返回0。对于TCP你可以字节写一个循环发送。当send函数返回SOCKET_ERROR时,才标志着有错误。但对于UDP,你不要写循环发送,否则将给你的接收带来极大的麻烦。所以UDP需要用setsockopt来改变Socket内部Buffer的大小,以能容纳你的发包。明确一点,TCP作为流,发包是不会整包到达的,而是源源不断的到,那接收方就必须组包而UDP作为消息或数据报,它一定是整包到达接收方

       2、关于接收,一般的发包都有包边界,首要的就是你这个包的长度要让接收方知道,于是就有个包头信息,对于TCP,接收方先收这个包头信息,然后再收包数据。一次收齐整个包也可以,可要对结果是否收齐进行验证。这也就完成了组包过程。UDP,那你只能整包接收了。要是你提供的接收Buffer过小,TCP将返回实际接收的长度,余下的还可以收,而UDP不同的是,余下的数据被丢弃并返回WSAEMSGSIZE错误。注意TCP,要是你提供的Buffer佷大,那么可能收到的就是多个发包,你必须分离它们,还有就是当Buffer太小,而一次收不完Socket内部的数据,那么Socket接收事件(OnReceive),可能不会再触发,使用事件方式进行接收时,密切注意这点。这些特性就是体现了流和数据包的区别。

UNIX网络编程——Socket粘包问题的更多相关文章

  1. python网络编程-socket“粘包”(小数据发送问题)

    一:什么是粘包 “粘包”, 即服务器端你调用时send 2次,但你send调用时,数据其实并没有立刻被发送给客户端,而是放到了系统的socket发送缓冲区里,等缓冲区满了.或者数据等待超时了,数据才会 ...

  2. Python之路 - 网络编程之粘包

    Python之路 - 网络编程之粘包 粘包

  3. UNIX网络编程——Socket/TCP粘包、多包和少包, 断包

    为什么TCP 会粘包 前几天,调试mina的TCP通信, 第一个协议包解析正常,第二个数据包不完整.为什么会这样吗,我们用mina这样通信框架,还会出现这种问题? TCP(transport cont ...

  4. python socket网络编程之粘包问题详解

    一,粘包问题详情 1,只有TCP有粘包现象,UDP永远不会粘包 你的程序实际上无权直接操作网卡的,你操作网卡都是通过操作系统给用户程序暴露出来的接口,那每次你的程序要给远程发数据时,其实是先把数据从用 ...

  5. 8-2udp和tcp网络编程以及粘包和解决粘包的方法

    一  tcp网络编程 server 端 import socket sk=socket.socket() #实例化一个对象 sk.setsockopt(socket.SOL_SOCKET,socket ...

  6. UNIX网络编程——socket概述和字节序、地址转换函数

    一.什么是socket socket可以看成是用户进程与内核网络协议栈的编程接口.socket不仅可以用于本机的进程间通信,还可以用于网络上不同主机的进程间通信. socket API是一层抽象的网络 ...

  7. Learning-Python【29】:网络编程之粘包

    粘包问题 上一篇博客遗留了一个问题,在接收的最大字节数设置为 1024 时,当接收的结果大于1024,再执行下一条命令时还是会返回上一条命令未执行完成的结果.这就是粘包问题. 因为TCP协议又叫流式协 ...

  8. Python网络编程,粘包、分包问题的解决

    tcp编程中的粘包.分包问题的解决: 参考:https://blog.csdn.net/yannanxiu/article/details/52096465 服务端: #!/bin/env pytho ...

  9. day32 网络编程之粘包问题

    1.最大半连接数 什么是最大半连接数 半连接:在进行TCP协议通信时,客户端与服务器端进行三次握手建立连接,但是有时客户端与服务器端进行了连接申请,服务器端也同意了申请(既已经完成三次握手的两次),此 ...

随机推荐

  1. hdu 4670 Cube number on a tree(点分治)

    Cube number on a tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/ ...

  2. [SDOI2009]Bill的挑战

    题目描述 题解: 因为要求的T长度一定,可定义f[i][j] 为前i位状态为j的方案,can[i][j]表示第i为字母j,可行的状态 每次往后推就行了 #include <algorithm&g ...

  3. [Noi2016]国王饮水记

    来自FallDream的博客,未经允许,请勿转载,谢谢. 跳蚤国有 n 个城市,伟大的跳蚤国王居住在跳蚤国首都中,即 1 号城市中.跳蚤国最大的问题就是饮水问题,由于首都中居住的跳蚤实在太多,跳蚤国王 ...

  4. [hdu5608]function

    题意:$\sum_{d|n}f(d)=n^{2}-3n+2$,求$\sum_{i=1}^{n}f(i)\mod 10^{9}+7$ , $n \leqslant 10^{9}$ $\left( T \ ...

  5. Spring学习笔记3——使用注解的方式完成注入对象中的效果

    第一步:修改applicationContext.xml 添加<context:annotation-config/>表示告诉Spring要用注解的方式进行配置 <?xml vers ...

  6. 《Java技术》第三次作业--面向对象——继承、抽象类、接口

    1.阅读下面程序,分析是否能编译通过?如果不能,说明原因.应该如何修改?程序的运行结果是什么?为什么子类的构造方法在运行之前,必须调用父 类的构造方法?能不能反过来? class Grandparen ...

  7. Zend引擎探索 之 PHP中前置递增不返回左值

    首先来讲,一般我们对"左值"的理解就是可以出现在赋值运算符的左侧的标识符,也就是可以被赋值.这样讲也许并不十分确切,在不同的语言中对左值的定义也不尽相同.在这里我们讨论前置递增(和 ...

  8. java集合之LinkedList源码解读

    源自:jdk1.8.0_121 LinkedList继承自AbstractSequentialList,实现了List.Deque.Cloneable.Serializable. LinkedList ...

  9. Cisco 的基本配置实例之四----vlan的规划及配置(核心交换机)

    4.vlan的规划及配置 在本节中我们讲解vlan的规划及具体的配置命令.在此例中我们用的是vtp(VLAN Trunking Protocol)server的模式,在这种模式中我们需要配置核心交换机 ...

  10. 关于 printf scanf getchar

    float默认小数6位 右对齐.-m 左对齐 在调用printf函数输出数据时,当数据的实际位宽大于printf函数中的指定位宽时,将按照数据的实际位宽输出数据. .n表精度 输出%符号 注意点 #i ...