hdu 3642 Get The Treasury
Get The Treasury
http://acm.hdu.edu.cn/showproblem.php?pid=3642
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
in a secret region. And he has a special device that can be used to detect
treasury under the surface of the earth. One day he got outside with the device
to ascertain the treasury. He chose many different locations on the surface of
the earth near the secret region. And at each spot he used the device to detect
treasury and got some data from it representing a region, which may contain
treasury below the surface. The data from the device at each spot is six
integers x1, y1, z1, x2,
y2 and z2 (x1<x2,
y1<y2, z1<z2). According to
the instruction of the device they represent the range of x, y and z coordinates
of the region. That is to say, the x coordinate of the region, which may contain
treasury, ranges from x1 to x2. So do y and z coordinates.
The origin of the coordinates is a fixed point under the ground.
Jack can’t
get the total volume of the treasury because these regions don’t always contain
treasury. Through years of experience, he discovers that if a region is detected
that may have treasury at more than two different spots, the region really exist
treasure. And now Jack only wants to know the minimum volume of the
treasury.
Now Jack entrusts the problem to you.
integer t, the number of test cases, followed by the input data for each test
case.
Each test case is given in some lines. In the first line there is an
integer n (1 ≤ n ≤ 1000), the number of spots on the surface of the earth that
he had detected. Then n lines follow, every line contains six integers
x1, y1, z1, x2, y2 and
z2, separated by a space. The absolute value of x and y coordinates
of the vertices is no more than 106, and that of z coordinate is no
more than 500.
single line. a is the case number, and b is the minimum volume of treasury. The
case number is counted from one.
1
0 0 0 5 6 4
3
0 0 0 5 5 5
3 3 3 9 10 11
3 3 3 13 20 45
Case 2: 8
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
#define N 1001
#define lc k<<1,l,mid
#define rc k<<1|1,mid+1,r
struct node
{
int l,r,h,f;
bool operator < (node p)const
{
return h<p.h;
}
}a[N<<];
struct edge
{
int x,xx,y,yy,z,zz;
}b[N];
int sum1[N<<],sum2[N<<],sum3[N<<],f[N<<],has[N<<],has2[N<<];
long long ans;
int n,cnt,opl,opr,w;
void up(int k,int l,int r)
{
if(f[k]>=) sum3[k]=has2[r+]-has2[l];
else if(f[k]==)
{
sum3[k]=sum1[k<<]+sum1[k<<|];
sum2[k]=has2[r+]-has2[l];
}
else if(f[k]==)
{
sum3[k]=sum2[k<<]+sum2[k<<|];
sum2[k]=sum1[k<<]+sum1[k<<|];
sum1[k]=has2[r+]-has2[l];
}
else
{
sum3[k]=sum3[k<<]+sum3[k<<|];
sum2[k]=sum2[k<<]+sum2[k<<|];
sum1[k]=sum1[k<<]+sum1[k<<|];
}
}
void change(int k,int l,int r)
{
if(opl<=l && r<=opr)
{
f[k]+=w;
up(k,l,r);
return;
}
int mid=l+r>>;
if(opl<=mid) change(lc);
if(opr>mid) change(rc);
up(k,l,r);
}
int main()
{
int T;
scanf("%d",&T);
for(int t=;t<=T;t++)
{
ans=;
cnt=;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d%d%d%d%d%d",&b[i].x,&b[i].y,&b[i].z,&b[i].xx,&b[i].yy,&b[i].zz);
has[i*-]=b[i].z; has[i*]=b[i].zz;
}
sort(has+,has+*n+);
cnt=unique(has+,has+*n+)-(has+);
for(int i=;i<cnt;i++)
{
int sz=;
for(int j=;j<=n;j++)
if(b[j].z<=has[i] && b[j].zz>=has[i+])
{
a[++sz].l=b[j].x; a[sz].r=b[j].xx; a[sz].h=b[j].y; a[sz].f=;
a[++sz].l=b[j].x; a[sz].r=b[j].xx; a[sz].h=b[j].yy; a[sz].f=-;
has2[sz-]=b[j].x; has2[sz]=b[j].xx;
}
sort(has2+,has2+sz+);
int m=unique(has2+,has2+sz+)-(has2+);
sort(a+,a+sz+);
memset(sum1,,sizeof(sum1));
memset(sum2,,sizeof(sum2));
memset(sum3,,sizeof(sum3));
for(int j=;j<=sz;j++)
{
opl=lower_bound(has2+,has2+m+,a[j].l)-has2;
opr=lower_bound(has2+,has2+m+,a[j].r)-has2-;
w=a[j].f;
change(,,m);
ans+=1ll*sum3[]*(a[j+].h-a[j].h)*(has[i+]-has[i]);
}
}
printf("Case %d: %I64d\n",t,ans);
}
}
hdu 3642 Get The Treasury的更多相关文章
- hdu 3642 Get The Treasury(扫描线)
pid=3642" style="">题目链接:hdu 3642 Get The Treasury 题目大意:三维坐标系,给定若干的长方体,问说有多少位置被覆盖3次 ...
- HDU 3642 - Get The Treasury - [加强版扫描线+线段树]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- HDU 3642 Get The Treasury (线段树扫描线)
题意:给你一些长方体,问你覆盖三次及以上的体积有多大 首先我们观察x轴y轴一样很大,但是z轴很小,所以我们可以枚举z轴(-500,500),注意我们枚举的是每一段长度为一的z轴的xy轴的面积而不是点. ...
- HDU 3642 Get The Treasury (线段树扫描线,求体积并)
参考链接 : http://blog.csdn.net/zxy_snow/article/details/6870127 题意:给你n个立方体,求覆盖三次以上(包括三次)的区域的体积 思路:先将z坐标 ...
- HDU 3642 Get The Treasury 线段树+分层扫描线
http://www.acmerblog.com/hdu-3642-get-the-treasury-6603.html 学习:三维就是把竖坐标离散化分层,每一层进行线段树二维面积并就好了
- hdu 3642 Get The Treasury (三维的扫描线)
题目大意: 给出N个立方体. 求一个三维空间中被包围三次的空间的体积之和. 思路分析: 发现Z的范围非常小.那么我们能够枚举Z轴,然后对 x y做扫描线. 并且不用枚举全部的Z ,仅仅须要将Z离散化之 ...
- HDU - 3642 Get The Treasury(线段树求体积交)
https://cn.vjudge.net/problem/HDU-3642 题意 求立方体相交至少3次的体积. 分析 三维的呢..首先解决至少覆盖三次的问题.则用三个标记,更新时的细节要注意. 注意 ...
- HDU 3642 Get The Treasury ( 线段树 求长方体体积并 )
求覆盖三次及其以上的长方体体积并. 这题跟 http://wenku.baidu.com/view/d6f309eb81c758f5f61f6722.html 这里讲的长方体体积并并不一样. 因为本题 ...
- Q - Get The Treasury - HDU 3642 (扫面线求体积)
题意:求被三个或三个以上立方体重合的体积 分析:就是平面面积的加强,不过归根还是一样的,可以把z轴按照从小向大分区间N个,然后可以得到N个平面,用平面重复三次以上的在和高度计算体积. ******** ...
随机推荐
- NOIP2011题解
NOIP2011其实早就做完了....一直懒得写.... Day1 T1铺地毯 我什么都不想说,不会做您就没必要接着看了.... #include<iostream> using name ...
- [JSOI2008]球形空间产生器sphere
Sol 设一个dis,就有n+1个方程,消掉dis,就只有n个方程,组成一个方程组,高斯消元就好(建议建立方程时推一下,很简单) # include <bits/stdc++.h> # d ...
- [ZJOI2014]力
推公式发现(这不是水题吗,这要推吗) \[E_i=\Sigma^{i-1}_{j=1} \frac{q_j}{(i-j)^2} - \Sigma^{n}_{j=i+1} \frac{q_j}{(i-j ...
- iOS开发--XMPPFramework--好友列表(五)
上一篇文章,我们讨论了调试和好友模块,这一篇,在引入了好友模块后,我们来说说好友列表的显示. 还记得在上一篇中,我们把自动拉去好友列表给关掉了,所以,我们选择在控制器的-(void)viewDidLo ...
- 【MyBatis源码分析】Configuration加载(上篇)
config.xml解析为org.w3c.dom.Document 本文首先来简单看一下MyBatis中将config.xml解析为org.w3c.dom.Document的流程,代码为上文的这部分: ...
- Type Archive for required library: 'C:/Users/EuphemiaShaw/.m2/repository/org/apache/hadoop/hadoop-hdfs/2.6.5/hadoop-hdfs-2.6.5.jar' in project 'mapreduce' cannot be read or is not a valid ZIP file
error: Description Resource Path Location Type Archive for required library: 'C:/Users/EuphemiaShaw/ ...
- C++学习-9
友元主要用于访问私有变量,友元函数跟所在位置的权限没有任何关系friend+函数声明 友元类通常设计为一种对数据操作或类之间传递消息的辅助类(注意一下顺序) Explicit就是要求严格的匹配,不允许 ...
- ccd采集
- MySQL Connector 卸载
MySQL Connector 安装的时候有时候会遇到很多问题,有时候会卸载失败,导致无法重新安装.测试了网上各种办法,删文件,删注册表,重启,360强行删除都不是很有效.最后发现msizap比较有效 ...
- 关于Sql server数据 MD5加密
最近在写一个web项目时,需要在数据库中将用户密码等一类信息进行加密处理.数据加密算法有许多 ,各有各的优缺点;在 http://www.cnblogs.com/yangywyangyw/arch ...