codeforces#1136E. Nastya Hasn't Written a Legend(二分+线段树)
题目链接:
http://codeforces.com/contest/1136/problem/E
题意:
初始有a数组和k数组
有两种操作,一,求l到r的区间和,二,$a_i\pm x$
并且会有一个连锁反应
$$while\left ( a_{i+1}<a_i+k_i \right )a_{i+1}=a_i+k_i,i++ $$
数据范围:
$2 \leq n \leq 10^{5}$
$-10^{9} \leq a_i \leq 10^{9}$
$-10^{6} \leq k_i \leq 10^{6}$
$1 \leq q \leq 10^{5}$
$1 \leq i \leq n$,$0 \leq x \leq 10^{6}$
$1 \leq l \leq r \leq n$
分析:
对于每次修改,我们可以用二分查找到连锁的末尾。
而对于一个被修改后的区间$(i,r)$的元素$a_x$,它由两部分组成$a_x=a_i+\sum_{j=i}^{x-1}k_j$
两部分的值都可以轻易算出,然后用两颗线段树分别记录两部分的区间和(一颗线段树也行)。
用到前缀和的前缀和,还有懒惰标记
具体实现见ac代码
ac代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const ll INF=1e18;
ll sum1[maxn],sum2[maxn],treea[4*maxn],treeb[4*maxn],lazya[4*maxn],lazyb[4*maxn];
int a[maxn];
void bulida(int l,int r,int rt)
{
int md=(r+l)/2;
if(r==l)
{
treea[rt]=a[l];
return;
}
bulida(l,md,rt*2);
bulida(md+1,r,rt*2+1);
treea[rt]=treea[rt*2]+treea[rt*2+1];
}
void pushdowna(int l,int r,int rt)
{
int md=(l+r)/2;
if(lazya[rt]!=-INF)
{
treea[rt*2]=(md-l+1)*lazya[rt];
treea[rt*2+1]=(r-md-1+1)*lazya[rt];
lazya[rt*2]=lazya[rt*2+1]=lazya[rt];
lazya[rt]=-INF;
}
}
ll quera(int l,int r,int nowl,int nowr,int rt)
{
if(r<nowl||l>nowr)return 0;
int md=(nowr+nowl)/2;
if(l<=nowl&&r>=nowr)return treea[rt];
pushdowna(nowl,nowr,rt);
return quera(l,r,nowl,md,rt*2)+quera(l,r,md+1,nowr,rt*2+1);
}
void updataa(ll x,int l,int r,int nowl,int nowr,int rt)
{
if(r<nowl||l>nowr)return ;
int md=(nowr+nowl)/2;
if(l<=nowl&&r>=nowr)
{
treea[rt]=(nowr-nowl+1)*x;
lazya[rt]=x;
return ;
}
pushdowna(nowl,nowr,rt);
updataa(x,l,r,nowl,md,rt*2);
updataa(x,l,r,md+1,nowr,rt*2+1);
treea[rt]=treea[rt*2]+treea[rt*2+1];
} void pushdownb(int l,int r,int rt)
{
int md=(l+r)/2;
if(lazyb[rt]!=-INF)
{
treeb[rt*2]=sum2[md-1]-sum2[l-2]+(l-md-1)*sum1[lazyb[rt]-1];
treeb[rt*2+1]=sum2[r-1]-sum2[md+1-2]+(md+1-r-1)*sum1[lazyb[rt]-1];
lazyb[rt*2]=lazyb[rt*2+1]=lazyb[rt];
lazyb[rt]=-INF;
}
}
void updatabb(ll x,int pos,int nowl,int nowr,int rt)
{
int md=(nowr+nowl)/2;
if(nowl==nowr)
{
treeb[rt]=x;
return ;
}
pushdownb(nowl,nowr,rt);
if(pos>=md+1)updatabb(x,pos,md+1,nowr,rt*2+1);
else updatabb(x,pos,nowl,md,rt*2);
treeb[rt]=treeb[rt*2]+treeb[rt*2+1];
}
ll querb(int l,int r,int nowl,int nowr,int rt)
{
if(r<nowl||l>nowr)return 0;
int md=(nowr+nowl)/2;
if(l<=nowl&&r>=nowr)return treeb[rt];
pushdownb(nowl,nowr,rt);
return querb(l,r,nowl,md,rt*2)+querb(l,r,md+1,nowr,rt*2+1);
}
void updatab(ll x,int l,int r,int nowl,int nowr,int rt)
{
if(r<nowl||l>nowr)return ;
int md=(nowr+nowl)/2;
if(l<=nowl&&r>=nowr)
{
treeb[rt]=sum2[nowr-1]-sum2[nowl-2]+(nowl-nowr-1)*sum1[x-1];
lazyb[rt]=x;
return ;
}
pushdownb(nowl,nowr,rt);
updatab(x,l,r,nowl,md,rt*2);
updatab(x,l,r,md+1,nowr,rt*2+1);
treeb[rt]=treeb[rt*2]+treeb[rt*2+1];
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
for(int i=1; i<=n-1; i++)
{
int x;
scanf("%d",&x);
sum1[i]=sum1[i-1]+x;
sum2[i]=sum2[i-1]+sum1[i];
}
for(int i=0; i<4*maxn; i++)lazya[i]=lazyb[i]=-INF;
bulida(1,n,1);
int T;
scanf("%d",&T);
while(T--)
{
getchar();
char key;
scanf("%c",&key);
if(key=='s')
{
int l,r;
scanf("%d %d",&l,&r);
printf("%lld\n",quera(l,r,1,n,1)+querb(l,r,1,n,1));
}
else if(key=='+')
{
ll x,add;
scanf("%lld %lld",&x,&add);
add=quera(x,x,1,n,1)+querb(x,x,1,n,1)+add;
int st=x,en=n;
while(st!=en)
{
int md=(st+en)/2;
if(sum1[md+1-1]-sum1[x-1]+add>=querb(md+1,md+1,1,n,1)+quera(md+1,md+1,1,n,1))st=md+1;
else en=md;
}
updataa(add,x,st,1,n,1);
updatab(x,x+1,st,1,n,1);
updatabb(0,x,1,n,1);
}
}
return 0;
}
codeforces#1136E. Nastya Hasn't Written a Legend(二分+线段树)的更多相关文章
- cf1136E. Nastya Hasn't Written a Legend(二分 线段树)
题意 题目链接 Sol yy出了一个暴躁线段树的做法. 因为题目保证了 \(a_i + k_i <= a_{i+1}\) 那么我们每次修改时只需要考虑取max就行了. 显然从一个位置开始能影响到 ...
- Codeforces 1136E - Nastya Hasn't Written a Legend - [线段树+二分]
题目链接:https://codeforces.com/problemset/problem/1136/E 题意: 给出一个 $a[1 \sim n]$,以及一个 $k[1 \sim (n-1)]$, ...
- Codeforces 1136E Nastya Hasn't Written a Legend 线段树
vp的时候没码出来.. 我们用set去维护, 每一块区域, 每块区域内的元素与下一个元素的差值刚好为ki,每次加值的时候我们暴力合并, 可以发现我们最多合并O(n)次. 然后写个线段树就没了. #in ...
- Codeforces 1136E Nastya Hasn't Written a Legend (线段树教做人系列)
题意:有一个数组a和一个数组k,数组a一直保持一个性质:a[i + 1] >= a[i] + k[i].有两种操作:1,给某个元素加上x,但是加上之后要保持数组a的性质.比如a[i]加上x之后, ...
- CF1136E Nastya Hasn't Written a Legend(线段树)
还能说什么呢,简直太妙了. $$a_{i+1}<a_i+k_i$$ $$a_{i+1}-k_i-k_{i-1}-\cdots-k_1<a_i+k_i-k_i-k_{i-1}-\cdots- ...
- Educational Codeforces Round 61 D 二分 + 线段树
https://codeforces.com/contest/1132/problem/D 二分 + 线段树(弃用结构体型线段树) 题意 有n台电脑,只有一个充电器,每台电脑一开始有a[i]电量,每秒 ...
- Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)
Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...
- Codeforces Round #292 (Div. 1) C. Drazil and Park 线段树
C. Drazil and Park 题目连接: http://codeforces.com/contest/516/problem/C Description Drazil is a monkey. ...
- Codeforces Round #254 (Div. 1) C. DZY Loves Colors 线段树
题目链接: http://codeforces.com/problemset/problem/444/C J. DZY Loves Colors time limit per test:2 secon ...
随机推荐
- JavaScript第一回-来龙去脉
简写:JavaScript-JS ECMAScript-ES 写在前面的话:啃文字大多时间不是件愉快的事情,但是我们必须过这个坎,让自己习惯,让自己不讨厌,至于喜欢不喜欢,我们等时间给出答案. J ...
- 三种方式实现观察者模式 及 Spring中的事件编程模型
观察者模式可以说是众多设计模式中,最容易理解的设计模式之一了,观察者模式在Spring中也随处可见,面试的时候,面试官可能会问,嘿,你既然读过Spring源码,那你说说Spring中运用的设计模式吧, ...
- arguments对象详解
在javascript中,函数是没有重载这一项的,所谓的重载,一个函数可以有多个,就是参数的个数和形式不同所以引用的功能不同,而js不存在函数重载,不管传不传参数,函数里面是否引用,关系都不大,一个函 ...
- c#多线程总结(纯干货)
线程基础 创建线程 static void Main(string[] args) { Thread t = new Thread(PrintNumbers); t.Start();//线程开始执行 ...
- JVM上的响应式流 — Reactor简介
强烈建议先阅读下JVM平台上的响应式流(Reactive Streams)规范,如果没读过的话. 官方文档:https://projectreactor.io/. 响应式编程 作为响应式编程方向上的第 ...
- 谈谈我理解的SA——Systems Architecture
什么是SA? SA即Systems Architecture,是系统体系结构. 系统体系结构是定义系统的结构.行为和系统视图的概念模型.架构师将其系统的形式化描述或表示出来,以支持结构和行为的推理的方 ...
- 通过 UI 管理 docker
Docker 正在被用在越来越多的场景中,对于不太习惯命令行工具的朋友来说,docker cli 用起来可能会比较吃力.本文笔者将介绍一个功能强大的 docker web 客户端:portainer( ...
- mysql_8.0.12环境配置
1. 官网下载mysql_8.0.12免安装包,解压到你存放的地方: 2. 配置环境变量(把bin的文件夹弄进系统path里面): 3. 在解压的根路径中,查看是否含有my.ini文件,没有就新建一个 ...
- sql学习笔记(三)—— 联表查询
上篇写了一些sql查询的知识,这篇接着写一下有关联表查询的知识. 既然是联表查询,那肯定得多个表啊,所以,我们先创建一个教师表,表名为 teacher,并且向表中插入数据. 准备工作: 创建表语句: ...
- C# 设置程序启动项
托盘图标设置 新建一个NotifyIcon,会在托盘处显示一个图标. NotifyIcon.Icon可以直接设置一个ico图片,也可以延用原有程序的图标. notifyIcon.Icon = Syst ...