线段树,注意tag优先级

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define MAXN 1000005
using namespace std;
struct Node{
int sumv,maxv,minv,tag_add,tag_change;
Node(int p1=,int p2=,int p3=,int p4=,int p5=){
sumv=p1,maxv=p3,minv=p2,tag_add=p4,tag_change=p5;
}
}dat[][MAXN<<];
int a[][MAXN];
Node Merge(Node t1,Node t2){
if(t1.tag_add==-)return t2;
if(t2.tag_add==-)return t1;
Node ret;
ret.sumv=t1.sumv+t2.sumv;
ret.maxv=max(t1.maxv,t2.maxv);
ret.minv=min(t1.minv,t2.minv);
return ret;
}
void build(Node d[],int x,int k,int L,int R){
if(L+==R){
d[k].sumv=d[k].maxv=d[k].minv=a[x][L];
return;
}
build(d,x,k<<,L,(L+R)>>);
build(d,x,k<<|,(L+R)>>,R);
d[k]=Merge(d[k<<],d[k<<|]);
}
void pushdown(Node d[],int k,int L,int R){
int lc=(k<<),rc=(k<<|);
if(d[k].tag_change){
d[lc].tag_add=;
d[lc].tag_change=d[k].tag_change;
d[lc].sumv=d[k].tag_change*(((L+R)>>)-L);
d[lc].maxv=d[k].tag_change;
d[lc].minv=d[k].tag_change;
d[rc].tag_add=;
d[rc].tag_change=d[k].tag_change;
d[rc].sumv=d[k].tag_change*(R-((L+R)>>));
d[rc].maxv=d[k].tag_change;
d[rc].minv=d[k].tag_change;
d[k].tag_change=;
}
if(d[k].tag_add){
d[lc].tag_add+=d[k].tag_add;
d[lc].sumv+=d[k].tag_add*(((L+R)>>)-L);
d[lc].maxv+=d[k].tag_add;
d[lc].minv+=d[k].tag_add;
d[rc].tag_add+=d[k].tag_add;
d[rc].sumv+=d[k].tag_add*(R-((L+R)>>));
d[rc].maxv+=d[k].tag_add;
d[rc].minv+=d[k].tag_add;
d[k].tag_add=;
}
}
void add(Node d[],int a,int b,int k,int L,int R,int x){
if(b<=L||R<=a){
return;
}
else if(a<=L&&R<=b){
d[k].tag_add+=x;
d[k].sumv+=x*(R-L);
d[k].maxv+=x;
d[k].minv+=x;
}
else{
if(d[k].tag_add||d[k].tag_change){
pushdown(d,k,L,R);
}
add(d,a,b,k<<,L,(L+R)>>,x);
add(d,a,b,k<<|,(L+R)>>,R,x);
d[k]=Merge(d[k<<],d[k<<|]);
}
}
void change(Node d[],int a,int b,int k,int L,int R,int x){
if(b<=L||R<=a){
return;
}
else if(a<=L&&R<=b){
d[k].tag_add=;
d[k].tag_change=x;
d[k].sumv=x*(R-L);
d[k].maxv=x;
d[k].minv=x;
}
else{
if(d[k].tag_add||d[k].tag_change){
pushdown(d,k,L,R);
}
change(d,a,b,k<<,L,(L+R)>>,x);
change(d,a,b,k<<|,(L+R)>>,R,x);
d[k]=Merge(d[k<<],d[k<<|]);
}
}
Node query(Node d[],int a,int b,int k,int L,int R){
if(b<=L||R<=a){
return Node(-,-,-,-,-);
}
else if(a<=L&&R<=b){
return d[k];
}
else{
if(d[k].tag_add||d[k].tag_change){
pushdown(d,k,L,R);
}
Node lc=query(d,a,b,k<<,L,(L+R)>>);
Node rc=query(d,a,b,k<<|,(L+R)>>,R);
return Merge(lc,rc);
}
}
void debug(Node d[],int k,int L,int R){
if(d[k].tag_add||d[k].tag_change){
pushdown(d,k,L,R);
}
if(L+==R){
printf("%d ",d[k]);
return;
}
debug(d,k<<,L,(L+R)>>);
debug(d,k<<|,(L+R)>>,R);
}
int m,n,T;
void solve(){
for(int i=;i<=m;i++){
build(dat[i],i,,,n+);
}
while(T--){
int p;scanf("%d",&p);
int x1,y1,x2,y2;scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
if(==p){
int v;scanf("%d",&v);
for(int i=x1;i<=x2;i++){
add(dat[i],y1,y2+,,,n+,v);
}
}
else if(==p){
int v;scanf("%d",&v);
for(int i=x1;i<=x2;i++){
change(dat[i],y1,y2+,,,n+,v);
}
}
else{
Node ans=query(dat[x1],y1,y2+,,,n+);
for(int i=x1+;i<=x2;i++){
Node t=query(dat[i],y1,y2+,,,n+);
ans.sumv+=t.sumv;
ans.maxv=max(ans.maxv,t.maxv);
ans.minv=min(ans.minv,t.minv);
}
printf("%d %d %d\n",ans.sumv,ans.minv,ans.maxv);
}
}
}
int main()
{
// freopen("data.in","r",stdin);
// freopen("my.in","w",stdout);
while(~scanf("%d%d%d",&m,&n,&T)){
solve();
}
}

UVA - 11992:Fast Matrix Operations的更多相关文章

  1. UVA 11992 - Fast Matrix Operations(段树)

    UVA 11992 - Fast Matrix Operations 题目链接 题意:给定一个矩阵,3种操作,在一个矩阵中加入值a,设置值a.查询和 思路:因为最多20列,所以全然能够当作20个线段树 ...

  2. Fast Matrix Operations(UVA)11992

    UVA 11992 - Fast Matrix Operations 给定一个r*c(r<=20,r*c<=1e6)的矩阵,其元素都是0,现在对其子矩阵进行操作. 1 x1 y1 x2 y ...

  3. uva 11992 Fast Matrix Operations 线段树模板

    注意 setsetset 和 addvaddvaddv 标记的下传. 我们可以控制懒惰标记的优先级. 由于 setsetset 操作的优先级高于 addaddadd 操作,当下传 setsetset ...

  4. Fast Matrix Operations

    A Simple Problem with Integers 每次将区间向下更新,或是用之前的方法,统计当前节点到父节点处的覆盖数目. #include <cstdio> #include ...

  5. UVA11992 - Fast Matrix Operations(段树部分的变化)

    UVA11992 - Fast Matrix Operations(线段树区间改动) 题目链接 题目大意:给你个r*c的矩阵,初始化为0. 然后给你三种操作: 1 x1, y1, x2, y2, v ...

  6. UVA 11992 Fast Matrix Operations(线段树:区间修改)

    题目链接 2015-10-30 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=s ...

  7. UVA 11992 Fast Matrix Operations (二维线段树)

    解法:因为至多20行,所以至多建20棵线段树,每行建一个.具体实现如下,有些复杂,慢慢看吧. #include <iostream> #include <cstdio> #in ...

  8. uva 11992 - Fast Matrix Operations

    简单的线段树的题: 有两种方法写这个题,目前用的熟是这种慢点的: 不过不知道怎么老是T: 感觉网上A过的人的时间度都好小,但他们都是用数组实现的 难道是指针比数组慢? 好吧,以后多用数组写写吧! 超时 ...

  9. UVa 11992 Fast Matrix Operations (线段树,区间修改)

    题意:给出一个row*col的全0矩阵,有三种操作 1 x1 y1 x2 y2 v:将x1 <= row <= x2, y1 <= col <= y2里面的点全部增加v: 2 ...

随机推荐

  1. 团队作业7——第二次项目冲刺(Beta版本12.08)

    项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:完成了排行榜的测试.上传头像功能的原型设计.界面优化 计划完成的内容:上传头像功能开发.测试.头像裁剪原型设计 每个人的工作 (有wor ...

  2. 个人作业2——NBA 2k18案例分析

    产品:篮球体育类游戏NBA 2k18 选择理由:这款游戏是<NBA 2k>的正统续作,自己和身边的朋友都对篮球比较感兴趣,经常看NBA,所以近几年的版本都有购买下载,加上游戏中人物动作比较 ...

  3. 学号:201621123032 《Java程序设计》第12周学习总结

    1:本周学习总结 1.1:以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2:面向系统综合设计-图书馆管理系统或购物车 2.1: 简述如何使用流与文件改造你的系统.文件中数据的格式如何? ...

  4. python 二叉堆

    BinaryHeap() 创建一个新的,空的二叉堆. insert(k) 向堆添加一个新项. findMin() 返回具有最小键值的项,并将项留在堆中. delMin() 返回具有最小键值的项,从堆中 ...

  5. 20145237《Java程序设计》第一周学习总结

    教材学习内容总结 java可分为Java SE.Java EE.Java ME三大平台. java SE分为JVM.JRE.JDK.与java语言四个部分. JRE包括java SE API和JVM. ...

  6. django搭建web (二) urls.py

    URL模式: 在app下的urls.py中 urlpatterns=[ url(正则表达式,view函数,参数,别名,前缀)] urlpatterns=[ url(r'^hello/$',hello. ...

  7. verilog学习笔记(2)_一个小module及其tb

    module-ex_cnt module ex_cnt( input wire sclk, input wire rst_n, output wire[9:0] cnt ); reg [9:0] cn ...

  8. 为label或者textView添加placeHolder

    Tip:使用textView的代理需要在头文件中加入: <UITextViewDelegate> h文件 @interface FeedbackViewController : UIVie ...

  9. 《高级软件测试》JIRA使用手册(一)JIRA基本情况

    JIRA 官方网站为:https://www.atlassian.com/software/jira 中文代理网站为:https://www.jira.cn 现版本:v7.3.0 Atlassian公 ...

  10. 《高级软件测试》11.14.安装和运行Jira

    今日任务完成情况如下: 小段:研究Jira在Linux的安装教程 小费:尝试在Ubuntu下安装Jira 小高:查阅了关于Jira软件的介绍和安装教程,下载准备明天安装,并学习使用 小王:注册Jira ...