4487: [Jsoi2015]染色问题

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 211  Solved: 127
[Submit][Status][Discuss]

Description

棋盘是一个n×m的矩形,分成n行m列共n*m个小方格。现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定:
1.  棋盘的每一个小方格既可以染色(染成C种颜色中的一种) ,也可以不染色。
2.  棋盘的每一行至少有一个小方格被染色。
3.  棋盘的每一列至少有一个小方格被染色。
4.  种颜色都在棋盘上出现至少一次。
以下是一些将3×3棋盘染成C = 3种颜色(红、黄、蓝)的例子:

请你求出满足要求的不同的染色方案总数。只要存在一个位置的颜色不同,
即认为两个染色方案是不同的

Input

输入只有一行 3 个整数n,m,c。1 < = n,m,c < = 400

Output

输出一个整数,为不同染色方案总数。因为总数可能很大,只需输出总数
mod 1,000,000,007的值。

Sample Input

2 2 3

Sample Output

60

HINT

Source

由一维容斥推到三维容斥。。
很诡异,并不是很懂,感性理解
枚举ijk,表示占据i行j列k个颜色或不涂色任意选
容斥就好了。
这样推出式子是O(N^3),根据二项式定理可以优化至O(N^2*log2(M))

看blog
http://blog.csdn.net/nirobc/article/details/51064832

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define N 403
#define p 1000000007
#define LL long long
using namespace std;
int n,m,c;
LL C[N][N];
LL quickpow(int num,int x)
{
LL ans=,base=num;
while (x) {
if (x&) ans=ans*base%p;
x>>=;
base=base*base%p;
}
return ans;
}
int main()
{
scanf("%d%d%d",&n,&m,&c);
for (int i=;i<=;i++) C[i][]=;
for (int i=;i<=;i++)
for (int j=;j<=i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%p;
LL ans=;
for (int k=;k<=c;k++) {
LL x=;
for (int i=n;i>=;i--){
LL tot=;
for (int j=m;j>=;j--) {
int t=i+j+k;
LL now=C[n][i]*C[m][j]%p*C[c][k]%p*tot%p;
if (t&) ans-=now;
else ans+=now;
tot=tot*x%p;
}
x=x*(c-k+)%p;
ans%=p;
}
}
printf("%lld\n",(ans%p+p)%p);
}

bzoj4487[Jsoi2015]染色问题 容斥+组合的更多相关文章

  1. [BZOJ4487][JSOI2015]染色问题(容斥)

    一开始写了7个DP方程,然后意识到这种DP应该都会有一个通式. 三个条件:有色行数为n,有色列数为m,颜色数p,三维容斥原理仍然成立. 于是就是求:$\sum_{i=0}^{n}\sum_{j=0}^ ...

  2. BZOJ4487 [Jsoi2015]染色问题

    BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...

  3. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  4. LOJ.6160.[美团CodeM初赛 RoundA]二分图染色(容斥 组合)

    题目链接 \(Description\) 求在\(2n\)个点的完全二分图(两边各有\(n\)个点)上确定两组匹配,使得两个匹配没有交集的方案数. \(n\leq10^7\). \(Solution\ ...

  5. [bzoj4487][Jsoi2015]染色_容斥原理

    染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...

  6. bzoj4767两双手 容斥+组合

    4767: 两双手 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 684  Solved: 208[Submit][Status][Discuss] ...

  7. 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)

    传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k​ ...

  8. [acmm week12]染色(容斥定理+组合数+逆元)

    1003 染色         Time Limit: 1sec    Memory Limit:256MB Description 今天离散数学课学了有关树的知识,god_v是个喜欢画画的人,所以他 ...

  9. BZOJ4487 JSOI2015染色问题(组合数学+容斥原理)

    逐个去除限制.第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数…… 然后是限制二.同样可以容斥,即恰好选n行的方案数=至 ...

随机推荐

  1. nyoj n-1位数

    n-1位数 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则求出w的后n-1位的 ...

  2. linux下面根据不同的日期创建不同文件,一般用户数据库的备份的shell编程

    [root@www scripts]# vi sh03.sh #!/bin/bash # Program: #  Program creates three files, which named by ...

  3. Spring邮件发送2

    前言:上一篇博文讲解了邮件发送的基础用法(数据是写死的),然而在实际开发中,大多数情况下邮件内容都是根据业务来动态生成的.所以在此篇博文中,我们将讲解邮件发送携带数据的几种方案. 一.解析自定义占位符 ...

  4. Python内置函数(43)——type

    英文文档: class type(object) class type(name, bases, dict) With one argument, return the type of an obje ...

  5. 用javascript做别踩白块游戏1

    初学Javascript做的一个别踩白块小游戏,代码简陋,如下: <!DOCTYPE html> <html> <head> <!-- 禁用缩放功能 --&g ...

  6. SpringCloud的Bus(一)消息中间件的概念和用途

    一.概念与定义 1.Message Broker Message Broker是一种消息验证.消息转换.消息路由的架构模式,用于如: 消息路由到一个或多个目的地 消息转化为其他的表现方式 执行消息的聚 ...

  7. j2ee基础(1)servlet的生命周期

    Servlet的生命周期 Servlet 生命周期规定了 Servlet 如何被加载.实例化.初始化. 处理客户端请求,以及何时结束服务. 该生命周期可以通过 javax.servlet.Servle ...

  8. Bootstrap 做一个简单的母版页

    随便搭的一个母版页,不太好看,只是为了看效果....请勿吐槽. 效果如图: 一.新建母版页,引入Bootstrap相关js文件 <link href="../css/bootstrap ...

  9. django中HttpRequest请求

    视图的第一个参数必须是HttpRequest对象 在视图函数中,接收的request有如下属性: path:一个字符串,表示请求的页面的完整路径,不包含域名. method:一个字符串,表示请求使用的 ...

  10. lambda匿名函数透析

    lambda匿名函数透析 目录 1       匿名函数的作用... 1 2       匿名函数的格式... 1 3       匿名函数实例代码... 3   1         匿名函数的作用 ...