题目描述

现在我们有一个长度为n的整数序列A。但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列。但是不希望改变过多的数,也不希望改变的幅度太大。

输入输出格式

输入格式:

第一行包含一个数n,接下来n个整数按顺序描述每一项的键值。

输出格式:

第一行一个整数表示最少需要改变多少个数。

第二行一个整数,表示在改变的数最少的情况下,每个数改变的绝对值之和的最小值。

输入输出样例

输入样例#1:
复制

4
5 2 3 5
输出样例#1: 复制

1
4

说明

【数据范围】

90%的数据n<=6000。

100%的数据n<=35000。

保证所有数列是随机的。

一份讲解的链接

先将数组每一位a[i]减i

这样单调上升就变成了不下降

在给第n+1位加一个正无穷的值(可以做所有子串的结尾,用于统计第2问的答案)

第一问:求最长不下降串长L

答案就是n-L

第二问:首先令f[i]表示1~i的最长不下降长度,g[i]为将1~i变为不下降的代价

对于一对(i,j)且f[i]=f[j]+1

设w(i,j)为将j+1~i变为单调不下降的最小代价

有一个结论:

找到一个断点k

j+1~k全部变成a[j],k+1~i全部变成a[i]

这样一定可以找到这个最小代价

证明见链接

这个复杂度很玄学,最坏O(n^3),但数据是随机的,所以远远达不到

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
struct Node
{
int next,to;
}edge[];
int L,n,head[],num,Min[],a[];
lol s1[],s2[],g[],f[];
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
int find(int x)
{
int l=,r=L,as=;
while (l<=r)
{
int mid=(l+r)/;
if (Min[mid]<=x) as=mid,l=mid+;
else r=mid-;
}
return as;
}
int main()
{int i,j,k;
cin>>n;
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
a[i]-=i;
}
++n;
a[n]=(<<);
memset(Min,,sizeof(Min));
Min[]=-<<;L=;
for (i=;i<=n;i++)
{
int t=find(a[i]);
f[i]=t+;
L=max(L,t+);
Min[t+]=min(Min[t+],a[i]);
}
cout<<n-L<<endl;
for (i=n;i>=;i--)
{
add(f[i],i);
g[i]=1ll<<;
}
a[]=-<<;g[]=;
for (i=;i<=n;i++)
{
for (j=head[f[i]-];j;j=edge[j].next)
{
int v=edge[j].to;
if (v>i) break;
if (a[v]>a[i]) continue;
for (k=v;k<=i;k++)
s1[k]=abs(a[k]-a[v]),s2[k]=abs(a[k]-a[i]);
for (k=v+;k<=i;k++)
s1[k]+=s1[k-],s2[k]+=s2[k-];
for (k=v;k<i;k++)
g[i]=min(g[i],g[v]+s1[k]-s1[v]+s2[i]-s2[k]);
}
}
cout<<g[n];
}

[HAOI2006]数字序列的更多相关文章

  1. 【BZOJ1049】 [HAOI2006]数字序列

    BZOJ1049 [HAOI2006]数字序列 dp好题? 第一问 第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列. \(n-ans\)就是最终的答案. 第二问 好难啊.不会.挖坑 ...

  2. 【BZOJ 1049】 1049: [HAOI2006]数字序列 (LIS+动态规划)

    1049: [HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变 ...

  3. 洛谷 P2501 [HAOI2006]数字序列 解题报告

    P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...

  4. bzoj 1049 [HAOI2006]数字序列

    [bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...

  5. 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)

    2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...

  6. BZOJ1049 [HAOI2006]数字序列0

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  7. 【BZOJ】1049: [HAOI2006]数字序列(lis+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1049 题意:给一个长度为n的整数序列.把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希 ...

  8. 1049: [HAOI2006]数字序列 - BZOJ

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大.Input 第一行包含一个数n ...

  9. BZOJ1049:[HAOI2006]数字序列(DP)

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列. 但是不希望改变过多的数,也不希望改变的幅度太大. Input 第一行包含一个 ...

随机推荐

  1. C语言字符数组作业

    一.PTA实验作业 题目1:7-1 字符串转换成十进制整数 1. 本题PTA提交列表 2. 设计思路 3.代码截图 4.本题调试过程碰到问题及PTA提交列表情况说明. 1.一开始我没想到怎么判断正负的 ...

  2. 2017C语言程序设计预备作业

    Deadline:2017-9-30 23:00 一.学习使用MarkDown 本学期的博客随笔都将使用MarkDown格式,要求熟练掌握MarkDown语法,学会如何使用标题,插入超链接,列表,插入 ...

  3. 前端面试题之html

    1.简述<!DOCTYPE> 的作用,标准模式和兼容模式各有什么区别? <!DOCTYPE> 位于文档的第一行,告知浏览器使用哪种规范. 如果不写DOCTYPE,浏览器会进入混 ...

  4. JAVA_SE基础——70.Math类

    package cn.itcast.other; /*  Math 数学类, 主要是提供了很多的数学公式.    abs(double a)  获取绝对值  ceil(double a)  向上取整 ...

  5. LxmlLinkExtractor类参数解析

    LxmlLinkExtractor LxmlLinkExtractor 是一种强大的链接提取器,使用他能很方便的进行选项过滤,他是通过xml中强大的HTMLParser实现的 源代码如下: class ...

  6. 说说cglib动态代理

    前言 jdk中的动态代理通过反射类Proxy和InvocationHandler回调接口实现,要求委托类必须实现一个接口,只能对该类接口中定义的方法实现代理,这在实际编程中有一定的局限性. cglib ...

  7. spring-oauth-server实践:OAuth2.0 通过header 传递 access_token 验证

    一.解析查找 access_token 1.OAuth2AuthenticationProcessingFilter.tokenExtractor 2.发现来源可以有两处:请求的头或者请求的参数 二. ...

  8. Spring Security入门(2-2)Spring Security 的运行原理 2

  9. leetcode算法:Island Perimeter

    You are given a map in form of a two-dimensional integer grid where 1 represents land and 0 represen ...

  10. slf4j入门

    一.官方说明: The Simple Logging Facade for Java (SLF4J) serves as a simple facade or abstraction for vari ...