来自FallDream的博客,未经允许,请勿转载,谢谢。


婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储)。她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式:

F[1][1]=1

F[i,j]=a*F[i][j-1]+b (j!=1)

F[i,1]=c*F[i-1][m]+d (i!=1)

递推式中a,b,c,d都是给定的常数。

现在婷婷想知道F[n][m]的值是多少,请你帮助她。由于最终结果可能很大,你只需要输出F[n][m]除以1,000,000,007的余数。

直接矩阵乘法貌似可以卡过  看评测机速度233

但是发现你只要记下ans=a*x+b 的a和b就行了 ,这样操作数量减少了一半,500ms左右就能过

讲讲正解 先考虑一行  假设m=4,x是首项,那么F[m]= a(a(a(x)+b)+b)+b 发现F[m]是一个等比数列加上一个 a^(m-1)*x .直接套用等比数列求和公式即可。

再考虑n,发现我可以把前面那个式子同样表示成Ax+B的形式,然后每次跳一行只是乘上C再加上D罢了,同样可以表示成等比数列 所以用同样的方法就可以解出答案

注意特判比为1的情况。

#include<iostream>
#include<cstdio>
#include<cstring>
#define mod 1000000007
#define getchar() (*S++)
char BB[<<],*S=BB;
using namespace std;
inline int read()
{
int x = ; char ch = getchar();
while(ch < '' || ch > '') ch = getchar();
while(ch >= '' && ch <= '')x = (x<<)+(x<<) + ch - '',ch = getchar();
return x;
} char n[],m[];
int a,b,c,d,A=,B=,C=,D=,len1=,len2=,ans=; int pow(int x,int k,int P)
{
int sum=;
for(;k;k>>=,x=1LL*x*x%P)
if(k&) sum=1LL*sum*x%P;
return sum;
} int main()
{
fread(BB,,<<,stdin);
do n[++len1]=getchar(); while(n[len1]!=' ');--len1;
do m[++len2]=getchar(); while(m[len2]!=' ');--len2;
a=read();b=read();c=read();d=read();
for(register int i=;i<=len2;++i)
A=(1LL*A*+m[i]-'')%(mod-),
B=(1LL*B*+m[i]-'')%mod;
if(a==) A=,B=1LL*(B+mod-)*b%mod;
else B=1LL*b*((pow(a,A+mod-,mod)+mod-)%mod)%mod*pow(a-,mod-,mod)%mod,A=pow(a,A+mod-,mod);
ans=(1LL*A+B)%mod;
for(register int i=;i<=len1;++i)
C=(1LL*C*+n[i]-'')%(mod-),
D=(1LL*D*+n[i]-'')%mod;
c=1LL*A*c%mod,d=(1LL*A*d%mod+B)%mod;
if(c==) ans=(ans+1LL*(D+mod-)*d%mod)%mod;
else ans=(1LL*d%mod*((pow(c,C+mod-,mod)+mod-)%mod)%mod*pow(c-,mod-,mod)%mod+1LL*ans*pow(c,C+mod-,mod)%mod)%mod;
printf("%d\n",ans);
return ;
}

[Noi2013]矩阵游戏的更多相关文章

  1. bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 613  Solved: 256[Submit][Status] ...

  2. BZOJ 3240: [Noi2013]矩阵游戏

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1586  Solved: 698[Submit][Status ...

  3. BZOJ 3240([Noi2013]矩阵游戏-费马小定理【矩阵推论】-%*s-快速读入)

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec   Memory Limit: 256 MB Submit: 123   Solved: 73 [ Submit][ St ...

  4. (十进制高速幂+矩阵优化)BZOJ 3240 3240: [Noi2013]矩阵游戏

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=3240 3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  M ...

  5. P1397 [NOI2013]矩阵游戏(递推)

    P1397 [NOI2013]矩阵游戏 一波化式子,$f[1][m]=a^{m-1}+b\sum_{i=0}^{m-2}a^i$,用快速幂+逆元求等比数列可以做到$logm$ 设$v=a^{m-1}, ...

  6. 【bzoj3240】 Noi2013—矩阵游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=3240 (题目链接) 题意$${F[1][1]=1}$$$${F[i][j]=a*F[i][j-1]+ ...

  7. BZOJ3240 [Noi2013]矩阵游戏

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  8. 3240: [Noi2013]矩阵游戏

    Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的 ...

  9. NOI2013矩阵游戏

    Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的 ...

  10. 洛谷P1397 [NOI2013]矩阵游戏

    矩阵快速幂+费马小定理 矩阵也是可以跑费马小定理的,但是要注意这个: (图是盗来的QAQ) 就是说如果矩阵a[i][i]都是相等的,那么就是mod p 而不是mod p-1了 #include< ...

随机推荐

  1. Java 多线程 从无到有

    个人总结:望对屏幕对面的您有所帮助 一. 线程概述 进程: 有独立的内存控件和系统资源 应用程序的执行实例 启动当前电脑任务管理器:taskmgr 进程是程序(任务)的执行过程,它持有资源(共享内存, ...

  2. ctf变量覆盖漏洞:

    1.变量覆盖: ①:针对extract函数的变量覆盖漏洞: <?php @error_reporting(E_ALL^E_NOTICE); require('config.php'); if($ ...

  3. sublime使用攻略

    一些常用的快捷键 Ctrl+Enter 在下一行插入新行.举个例子:即使光标不在行尾,也能快速向下插入一行. Ctrl+D 选中光标所占的文本,继续操作则会选中下一个相同的文本. Ctrl+Shift ...

  4. kubernetes入门(05)kubernetes的核心概念(2)

    一.使用 kubectl run 创建 pod(容器) 命令 kubectl run类似于 docker run,可以方便的创建一个容器(实际上创建的是一个由deployment来管理的Pod): 等 ...

  5. 新概念英语(1-137)A pleasant dream

    Lesson 137 A pleasant dream 美好的梦 Listen to the tape then answer this question. What would Julie like ...

  6. sql server 查询表的创建时间

    遇到一情况,前几天创建一个表,但是后来忙别的事情了,现在要用这个表,结果失忆了.....完全想不起来表名. 然后就想办法查询表的创建时间试图找回表名 最后找到了,根据表的创建时间排序,因为平常也用不到 ...

  7. IPv6原理、应用与实践

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 作者:腾讯微信技术架构部团队 2017年11月26日,中共中央办公厅和国务院办公厅印发了<推荐互联网协议第六版(IPv6)规模部署行动 ...

  8. CSS属性操作/下

    CSS属性操作/下 1.伪类 anchor伪类 跟<a>/</a>有关:专用于控制链接的显示效果 a:link(没有接触过的链接),用于定义了链接的常规状态. a:hover( ...

  9. I/O和管道

    一:I/O设备 I/O(Input/Output),即输入/输出,通常指数据在内部存储器和外部存储器或其他周边设备之间的输入和输出. 标准输入(STDIN):0 默认接受来自键盘的输入 标准输出(ST ...

  10. PIL绘图

    # coding:utf-8 # PIL的ImageDraw 提供了一系列绘图方法,让我们可以直接绘图.比如要生成字母验证码图片 from PIL import Image, ImageDraw, I ...