一、前述

视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。

VQA系统需要将图片和问题作为输入,结合这两部分信息,产生一条人类语言作为输出。针对一张特定的图片,如果想要机器以自然语言来回答关于该图片的某一个特定问题,我们需要让机器对图片的内容、问题的含义和意图以及相关的常识有一定的理解。VQA涉及到多方面的AI技术(图1):细粒度识别(这位女士是白种人吗?)、 物体识别(图中有几个香蕉?)、行为识别(这位女士在哭吗?)和对问题所包含文本的理解(NLP)。综上所述,VQA是一项涉及了计算机视觉(CV)和自然语言处理(NLP)两大领域的学习任务。它的主要目标就是让计算机根据输入的图片和问题输出一个符合自然语言规则且内容合理的答案。

二、具体步骤

2.1  第一步,生成答案

2.2  第二步,处理输⼊源数据

2.2.1 处理输⼊源数据:图⽚

卷积CNN结合VGG-16模型

VGG-16的标准构造 (keras)

def VGG_16(weights_path=None):
model = Sequential()
model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))
if weights_path:
model.load_weights(weights_path)
return model

 2.2.2 处理输⼊源数据:⽂字

2.3  第三步, 选取VQA模型-MLP

 2.3.1 选取VQA模型-MLP

2.3.2 选取VQA模型-LSTM

【自然语言处理】--视觉问答(Visual Question Answering,VQA)从初始到应用的更多相关文章

  1. Hierarchical Question-Image Co-Attention for Visual Question Answering

    Hierarchical Question-Image Co-Attention for Visual Question Answering NIPS 2016 Paper: https://arxi ...

  2. Visual Question Answering with Memory-Augmented Networks

    Visual Question Answering with Memory-Augmented Networks 2018-05-15 20:15:03 Motivation: 虽然 VQA 已经取得 ...

  3. 第八讲_图像问答Image Question Answering

    第八讲_图像问答Image Question Answering 课程结构 图像问答的描述 具备一系列AI能力:细分识别,物体检测,动作识别,常识推理,知识库推理..... 先要根据问题,判断什么任务 ...

  4. 论文笔记:Visual Question Answering as a Meta Learning Task

    Visual Question Answering as a Meta Learning Task ECCV 2018 2018-09-13 19:58:08 Paper: http://openac ...

  5. 论文阅读:Learning Visual Question Answering by Bootstrapping Hard Attention

    Learning Visual Question Answering by Bootstrapping Hard Attention Google DeepMind  ECCV-2018   2018 ...

  6. Learning Conditioned Graph Structures for Interpretable Visual Question Answering

    Learning Conditioned Graph Structures for Interpretable Visual Question Answering 2019-05-29 00:29:4 ...

  7. VQA视觉问答基础知识

    本文记录简单了解VQA的过程,目的是以此学习图像和文本的特征预处理.嵌入以及如何设计分类loss等等. 参考资料: https://zhuanlan.zhihu.com/p/40704719 http ...

  8. 论文:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering-阅读总结

    Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering-阅读总结 笔记不能简单的抄写文中 ...

  9. 【论文小综】基于外部知识的VQA(视觉问答)

    ​ 我们生活在一个多模态的世界中.视觉的捕捉与理解,知识的学习与感知,语言的交流与表达,诸多方面的信息促进着我们对于世界的认知.作为多模态领域的一个典型场景,VQA旨在结合视觉的信息来回答所提出的问题 ...

随机推荐

  1. C/C++中结构体struct 的使用

    结构(struct)      结构是由基本数据类型构成的.并用一个标识符来命名的各种变量的组合.  结构中可以使用不同的数据类型.      1. 结构说明和结构变量定义      在Turbo C ...

  2. Java 开发, volatile 你必须了解一下

    上一篇文章说了 CAS 原理,其中说到了 Atomic* 类,他们实现原子操作的机制就依靠了 volatile 的内存可见性特性.如果还不了解 CAS 和 Atomic*,建议看一下我们说的 CAS ...

  3. Linux下快速比较两个目录的不同

    曾多次想要在Linux下比较目录a和目录b中文件列表的差别,然后对目录a比目录b中多出的文件.少掉的文件分别做处理.但是,在网上搜索了多次也都没找到能直接处理好的工具. 所以想了很多不少方法,自我感觉 ...

  4. markdown箭头的处理

    转自:https://blog.csdn.net/m0_37167788/article/details/78603307 MarkDown - Latex符号(箭头)的整理 标签: markdown ...

  5. procotol.go 源码阅读

    )         return     }     bufferOver = buffer[i:]     return } //整形转换成字节 // func IntToBytes(n int) ...

  6. profile.go

    )         }()     }     return &prof }

  7. enumerate取下标

    for index,item in enumerate(product_list): # print(product_list.index(item),item) print(index,item) ...

  8. 这么用Mac才叫爽!

    用了近一年的 Macbook Pro,已经离不开它了.真是生活工作学习必备之良品啊. 如果你将要买苹果电脑或者刚买,那么不妨看看此文.推荐一些个人觉得好用的软件,而Mac本身的使用技巧----触控板. ...

  9. 带着新人看java虚拟机07(多线程篇)

    这一篇说一下比较枯燥的东西,为什么说枯燥呢,因为我写这都感觉很无聊,无非就是几个阻塞线程的方法和唤醒线程的方法... 1.线程中断 首先我们说一说怎么使得一个正在运行中的线程进入阻塞状态,这也叫做线程 ...

  10. volitale、synchronized、RetreenLock区别

    synchronized和RetreenLock锁区别 1.synchronized是java关键字,RetreenLock是个java类 2.synchronized无法获取锁状态,Lock可以判断 ...