Spark DataFrame写入HBase的常用方式
Spark是目前最流行的分布式计算框架,而HBase则是在HDFS之上的列式分布式存储引擎,基于Spark做离线或者实时计算,数据结果保存在HBase中是目前很流行的做法。例如用户画像、单品画像、推荐系统等都可以用HBase作为存储媒介,供客户端使用。
因此Spark如何向HBase中写数据就成为很重要的一个环节了。本文将会介绍三种写入的方式,其中一种还在期待中,暂且官网即可...
代码在spark 2.2.0版本亲测
1. 基于HBase API批量写入
第一种是最简单的使用方式了,就是基于RDD的分区,由于在spark中一个partition总是存储在一个excutor上,因此可以创建一个HBase连接,提交整个partition的内容。
大致的代码是:
rdd.foreachPartition { records =>
val config = HBaseConfiguration.create
config.set("hbase.zookeeper.property.clientPort", "2181")
config.set("hbase.zookeeper.quorum", "a1,a2,a3")
val connection = ConnectionFactory.createConnection(config)
val table = connection.getTable(TableName.valueOf("rec:user_rec"))
// 举个例子而已,真实的代码根据records来
val list = new java.util.ArrayList[Put]
for(i <- 0 until 10){
val put = new Put(Bytes.toBytes(i.toString))
put.addColumn(Bytes.toBytes("t"), Bytes.toBytes("aaaa"), Bytes.toBytes("1111"))
list.add(put)
}
// 批量提交
table.put(list)
// 分区数据写入HBase后关闭连接
table.close()
}
这样每次写的代码很多,显得不够友好,如果能跟dataframe保存parquet、csv之类的就好了。下面就看看怎么实现dataframe直接写入hbase吧!
2. Hortonworks的SHC写入
由于这个插件是hortonworks提供的,maven的中央仓库并没有直接可下载的版本。需要用户下载源码自己编译打包,如果有maven私库,可以上传到自己的maven私库里面。具体的步骤可以参考如下:
2.1 下载源码、编译、上传
去官网github下载即可:https://github.com/hortonworks-spark/shc
可以直接按照下面的readme说明来,也可以跟着我的笔记走。
下载完成后,如果有自己的私库,可以修改shc中的distributionManagement。然后点击旁边的maven插件deploy发布工程,如果只想打成jar包,那就直接install就可以了。
2.2 引入
在pom.xml中引入:
<dependency>
<groupId>com.hortonworks</groupId>
<artifactId>shc-core</artifactId>
<version>1.1.2-2.2-s_2.11-SNAPSHOT</version>
</dependency>
2.3
首先创建应用程序,Application.scala
object Application {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().master("local").appName("normal").getOrCreate()
spark.sparkContext.setLogLevel("warn")
val data = (0 to 255).map { i => HBaseRecord(i, "extra")}
val df:DataFrame = spark.createDataFrame(data)
df.write
.mode(SaveMode.Overwrite)
.options(Map(HBaseTableCatalog.tableCatalog -> catalog))
.format("org.apache.spark.sql.execution.datasources.hbase")
.save()
}
def catalog = s"""{
|"table":{"namespace":"rec", "name":"user_rec"},
|"rowkey":"key",
|"columns":{
|"col0":{"cf":"rowkey", "col":"key", "type":"string"},
|"col1":{"cf":"t", "col":"col1", "type":"boolean"},
|"col2":{"cf":"t", "col":"col2", "type":"double"},
|"col3":{"cf":"t", "col":"col3", "type":"float"},
|"col4":{"cf":"t", "col":"col4", "type":"int"},
|"col5":{"cf":"t", "col":"col5", "type":"bigint"},
|"col6":{"cf":"t", "col":"col6", "type":"smallint"},
|"col7":{"cf":"t", "col":"col7", "type":"string"},
|"col8":{"cf":"t", "col":"col8", "type":"tinyint"}
|}
|}""".stripMargin
}
case class HBaseRecord(
col0: String,
col1: Boolean,
col2: Double,
col3: Float,
col4: Int,
col5: Long,
col6: Short,
col7: String,
col8: Byte)
object HBaseRecord
{
def apply(i: Int, t: String): HBaseRecord = {
val s = s"""row${"%03d".format(i)}"""
HBaseRecord(s,
i % 2 == 0,
i.toDouble,
i.toFloat,
i,
i.toLong,
i.toShort,
s"String$i: $t",
i.toByte)
}
}
然后再resources目录下,添加hbase-site.xml、hdfs-site.xml、core-site.xml等配置文件。主要是获取Hbase中的一些连接地址。
3. HBase 2.x+即将发布的hbase-spark
如果有浏览官网习惯的同学,一定会发现,HBase官网的版本已经到了3.0.0-SNAPSHOT,并且早就在2.0版本就增加了一个hbase-spark模块,使用的方法跟上面hortonworks一样,只是format的包名不同而已,猜想就是把hortonworks给拷贝过来了。
另外Hbase-spark 2.0.0-alpha4目前已经公开在maven仓库中了。
http://mvnrepository.com/artifact/org.apache.hbase/hbase-spark
不过,内部的spark版本是1.6.0,太陈旧了!!!!真心等不起了...
期待hbase-spark官方能快点提供正式版吧。
参考
- hortonworks-spark/shc github:https://github.com/hortonworks-spark/shc
- maven仓库地址: http://mvnrepository.com/artifact/org.apache.hbase/hbase-spark
- Hbase spark sql/ dataframe官方文档:https://hbase.apache.org/book.html#_sparksql_dataframes
Spark DataFrame写入HBase的常用方式的更多相关文章
- Spark写入HBase(Bulk方式)
在使用Spark时经常需要把数据落入HBase中,如果使用普通的Java API,写入会速度很慢.还好Spark提供了Bulk写入方式的接口.那么Bulk写入与普通写入相比有什么优势呢? BulkLo ...
- spark踩坑——dataframe写入hbase连接异常
最近测试环境基于shc[https://github.com/hortonworks-spark/shc]的hbase-connector总是异常连接不到zookeeper,看下报错日志: 18/06 ...
- spark DataFrame的创建几种方式和存储
一. 从Spark2.0以上版本开始,Spark使用全新的SparkSession接口替代Spark1.6中的SQLContext及HiveContext接口来实现其对数据加载.转换.处理等功能.Sp ...
- Spark:DataFrame 写入文本文件
将DataFrame写成文件方法有很多最简单的将DataFrame转换成RDD,通过saveASTextFile进行保存但是这个方法存在一些局限性:1.将DataFrame转换成RDD或导致数据结构的 ...
- Spark如何写入HBase/Redis/MySQL/Kafka
一些概念 一个partition 对应一个task,一个task 必定存在于一个Executor,一个Executor 对应一个JVM. Partition 是一个可迭代数据集合 Task 本质是作用 ...
- spark运算结果写入hbase及优化
在Spark中利用map-reduce或者spark sql分析了数据之后,我们需要将结果写入外部文件系统. 本文,以向Hbase中写数据,为例,说一下,Spark怎么向Hbase中写数据. 首先,需 ...
- Spark:将DataFrame写入Mysql
Spark将DataFrame进行一些列处理后,需要将之写入mysql,下面是实现过程 1.mysql的信息 mysql的信息我保存在了外部的配置文件,这样方便后续的配置添加. //配置文件示例: [ ...
- 大数据学习day34---spark14------1 redis的事务(pipeline)测试 ,2. 利用redis的pipeline实现数据统计的exactlyonce ,3 SparkStreaming中数据写入Hbase实现ExactlyOnce, 4.Spark StandAlone的执行模式,5 spark on yarn
1 redis的事务(pipeline)测试 Redis本身对数据进行操作,单条命令是原子性的,但事务不保证原子性,且没有回滚.事务中任何命令执行失败,其余的命令仍会被执行,将Redis的多个操作放到 ...
- MapReduce和Spark写入Hbase多表总结
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 大家都知道用mapreduce或者spark写入已知的hbase中的表时,直接在mapreduc ...
随机推荐
- Thrift compiler代码生成类解析
代码生成类解析: Thrift--facebook RPC框架,介绍就不说了,百度,google一大把,使用也不介绍,直接上结构和分析吧. Hello.thrift文件内容如下: namespace ...
- 辩证看待 iostat
前言 经常做系统分析会接触到很多有用的工具,比如 iostat,它是用来分析磁盘性能.系统 I/O 的利器. 本文将重点介绍 iostat 命令的使用,并分析容易引起误解的几个指标. iostat i ...
- 理解Python中的装饰器//这篇文章将python的装饰器来龙去脉说的很清楚,故转过来存档
转自:http://www.cnblogs.com/rollenholt/archive/2012/05/02/2479833.html 这篇文章将python的装饰器来龙去脉说的很清楚,故转过来存档 ...
- CSS深入理解学习笔记之overflow
1.Overflow基本属性 overflow:visible(默认)/hidden/scroll/auto/inherit; visible:超出部分可见. hidden:超出部分隐藏. scrol ...
- DispatcherServlet介绍
<property name="features"> <list> <value>WriteMapNullValue</value> ...
- jQuery的Nicescroll滚动条插件使用方法
Nicescroll滚动条插件是一个非常强大的基于jQuery的滚动条插件,不需要增加额外的css,几乎全浏览器兼容.ie6+,实现只需要一段代码,侵入性非常小,样式可完全自定义,支持触摸事件,可在触 ...
- ie下常见的css兼容问题
1.border-radius 边框圆角 IE8及以下浏览器不支持border-radius webkit引擎支持-webkit-borderradius 私有属性 mozilla Gecko引擎支持 ...
- 01-Go命令与基础
什么是Go? Go是一门并发支持.垃圾回收的编译型系统编程语言,旨在创造一门具有在静态编译语言的高性能和动态的高效开之间拥有良好平衡点的一门编程语言. Go的主要特点有哪些? 类型安全和内存安全 以非 ...
- mybatis-spring最新版下载地址
mybatis-spring最新版下载地址: http://mvnrepository.com/artifact/org.mybatis/mybatis-spring/1.2.3 mybatis-sp ...
- Linux命令:useradd
Linux下:useradd 等价于 adduser Aix下:useradd 来自为知笔记(Wiz)