BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针

Description

Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day (1 <= M(i) <= 100,000,000). FJ wants to streamline the process of milking his cows every day, so he installs a brand new milking machine in his barn. Unfortunately, the machine turns out to be far too sensitive: it only works properly if the cows on the left side of the barn have the exact same total milk output as the cows on the right side of the barn! Let us call a subset of cows "balanced" if it can be partitioned into two groups having equal milk output. Since only a balanced subset of cows can make the milking machine work, FJ wonders how many subsets of his N cows are balanced. Please help him compute this quantity.

给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。

Input

 Line 1: The integer N. 
 Lines 2..1+N: Line i+1 contains M(i).

Output

* Line 1: The number of balanced subsets of cows.

Sample Input

4 1 2 3 4
INPUT DETAILS: There are 4 cows, with milk outputs 1, 2, 3, and 4.

Sample Output

3


首先每个数的系数只可能是0,1,-1,并且1和-1都是选的状态。

用meet in middle的思想,$3^{n/2}$枚举左边和右边,把左边选或不选的状态与和挂链,右边按和排序。

枚举左边的状态,再枚举右边的和,枚举过程中左边指针单调。

然后统计答案即可。

复杂度$O(6^{n/2})$。

代码:

// luogu-judger-enable-o2
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mr(x,y) make_pair(x,y)
#define N 100050
#define RR register
#define O2 __attribute__((optimize("-O2")))
typedef long long ll;
int n,a[25],m;
int ans;
int head[N],to[N],nxt[N],cnt,tot,t[N],vis[1<<22];
O2 struct A {
int v,S;
bool operator < (const A &x) const {
return v<x.v;
}
}b[N];
O2 inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
O2 void dfs(int dep,int sum,int sta) {
if(dep==m+1) {
add(sta,sum); return ;
}
dfs(dep+1,sum,sta);
dfs(dep+1,sum+a[dep],sta|(1<<(dep-1)));
dfs(dep+1,sum-a[dep],sta|(1<<(dep-1)));
}
O2 void solve(int dep,int sum,int sta) {
if(dep==n+1) {
b[++tot].v=sum; b[tot].S=sta;
return ;
}
solve(dep+1,sum,sta);
solve(dep+1,sum+a[dep],sta|(1<<(dep-1)));
solve(dep+1,sum-a[dep],sta|(1<<(dep-1)));
}
O2 int main() {
scanf("%d",&n);
m=n/2;
RR int i,j;
for(i=1;i<=n;i++) scanf("%d",&a[i]);
dfs(1,0,0);
solve(m+1,0,0);
sort(b+1,b+tot+1);
for(i=0;i<(1<<m);i++) {
t[0]=0;
for(j=head[i];j;j=nxt[j]) {
t[++t[0]]=to[j];
}
sort(t+1,t+t[0]+1);
RR int l=1,r=1;
/*for(l=1;l<=t[0];l++) {
while(r<=tot&&b[r].v<t[l]) r++;
if(r==tot+1) break;
if(b[r].v==t[l]) {
vis[i|(b[r].S)]++;
//if(vis[i|b[r].S]==1) ans++;
}
}*/
for(l=1;l<=tot;l++) {
while(r<=t[0]&&t[r]<b[l].v) r++;
if(r==t[0]+1) break;
if(t[r]==b[l].v) {
vis[i|(b[l].S)]++;
if(vis[i|(b[l].S)]==1) ans++;
}
}
}
printf("%d\n",ans-1);
}

BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针的更多相关文章

  1. 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)

    [Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...

  2. bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)

    2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 462  Solv ...

  3. 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469

    题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...

  4. [Usaco2012 Open]Balanced Cow Subsets

    Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...

  5. BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets

    考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...

  6. bzoj2679:[Usaco2012 Open]Balanced Cow Subsets

    思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...

  7. 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets

    [算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...

  8. BZOJ.2679.Balanced Cow Subsets(meet in the middle)

    BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...

  9. SPOJ-SUBSET Balanced Cow Subsets

    嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...

随机推荐

  1. Spring Cloud入门教程-Ribbon实现客户端负载均衡

    简介 我们继续以之前博客的代码为基础,增加Ribbon组件来提供客户端负载均衡.负载均衡是实现高并发.高性能.可伸缩服务的重要组成部分,它可以把请求分散到一个集群中不同的服务器中,以减轻每个服务器的负 ...

  2. 《C++标准程序库》学习笔记(一)C++相关特性

    抱着本厚厚的<C++标准库>读了几天,想想也该写点关于用法的总结,一来怕今后容易忘记,二来将书上的事例重新敲一遍,巩固对程序库相关知识的了解.今天开第一篇,以后不固定更新.当然,笔者所读为 ...

  3. LINQ、Lambda与委托

    首先定义个Person类: public class Person { public string Name{get;set;} //姓名 public int Age{get;set;} //年龄 ...

  4. MySQL/MariaDB中的事务和事务隔离级别

    本文目录:1.事务特性2.事务分类 2.1 扁平事务 2.2 带保存点的扁平事务 2.3 链式事务 2.4 嵌套事务 2.5 分布式事务3.事务控制语句4.显式事务的次数统计5.一致性非锁定读(快照查 ...

  5. 在Windows上安装FFmpeg程序的方法(you-get下载视频必备程序)

    FFmpeg是一套可以用来记录.转换数字音频.视频,并能将其转化为流的开源计算机程序.它提供了录制.转换以及流化音视频的完整解决方案.它包含了非常先进的音频/视频编解码库libavcodec. 该程序 ...

  6. 12.Django思维导图

  7. Scrapy爬虫框架补充内容三(代理及其基本原理介绍)

    前言:(本文参考维基百科及百度百科所写) 当我们使用爬虫抓取数据时,有时会产生错误比如:突然跳出来了403 Forbidden 或者网页上出现以下提示:您的ip访问频率太高 或者时不时跳出一个验证码需 ...

  8. PAT1127:ZigZagging on a Tree

    1127. ZigZagging on a Tree (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...

  9. Oracle-02:SQL语言的分类或者说SQL语言的组成

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 小结一版:  01.DDL(Data Definition Language)数据定义语言. 用来创建数据库中 ...

  10. AndroidEclipse里的视图里想添加SDK Manager但是找不到怎么办?

    有时候,我们想配置SDK Manager,但是发现找不到这个窗口,怎么办呢,网上有解释(上截图): —————————————————————————————————————————————————— ...