BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针
BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针
Description
给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。
Input
Output
Sample Input
INPUT DETAILS: There are 4 cows, with milk outputs 1, 2, 3, and 4.
Sample Output
3
首先每个数的系数只可能是0,1,-1,并且1和-1都是选的状态。
用meet in middle的思想,$3^{n/2}$枚举左边和右边,把左边选或不选的状态与和挂链,右边按和排序。
枚举左边的状态,再枚举右边的和,枚举过程中左边指针单调。
然后统计答案即可。
复杂度$O(6^{n/2})$。
代码:
// luogu-judger-enable-o2
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mr(x,y) make_pair(x,y)
#define N 100050
#define RR register
#define O2 __attribute__((optimize("-O2")))
typedef long long ll;
int n,a[25],m;
int ans;
int head[N],to[N],nxt[N],cnt,tot,t[N],vis[1<<22];
O2 struct A {
int v,S;
bool operator < (const A &x) const {
return v<x.v;
}
}b[N];
O2 inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
O2 void dfs(int dep,int sum,int sta) {
if(dep==m+1) {
add(sta,sum); return ;
}
dfs(dep+1,sum,sta);
dfs(dep+1,sum+a[dep],sta|(1<<(dep-1)));
dfs(dep+1,sum-a[dep],sta|(1<<(dep-1)));
}
O2 void solve(int dep,int sum,int sta) {
if(dep==n+1) {
b[++tot].v=sum; b[tot].S=sta;
return ;
}
solve(dep+1,sum,sta);
solve(dep+1,sum+a[dep],sta|(1<<(dep-1)));
solve(dep+1,sum-a[dep],sta|(1<<(dep-1)));
}
O2 int main() {
scanf("%d",&n);
m=n/2;
RR int i,j;
for(i=1;i<=n;i++) scanf("%d",&a[i]);
dfs(1,0,0);
solve(m+1,0,0);
sort(b+1,b+tot+1);
for(i=0;i<(1<<m);i++) {
t[0]=0;
for(j=head[i];j;j=nxt[j]) {
t[++t[0]]=to[j];
}
sort(t+1,t+t[0]+1);
RR int l=1,r=1;
/*for(l=1;l<=t[0];l++) {
while(r<=tot&&b[r].v<t[l]) r++;
if(r==tot+1) break;
if(b[r].v==t[l]) {
vis[i|(b[r].S)]++;
//if(vis[i|b[r].S]==1) ans++;
}
}*/
for(l=1;l<=tot;l++) {
while(r<=t[0]&&t[r]<b[l].v) r++;
if(r==t[0]+1) break;
if(t[r]==b[l].v) {
vis[i|(b[l].S)]++;
if(vis[i|(b[l].S)]==1) ans++;
}
}
}
printf("%d\n",ans-1);
}
BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针的更多相关文章
- 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)
[Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...
- bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)
2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 462 Solv ...
- 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469
题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...
- [Usaco2012 Open]Balanced Cow Subsets
Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...
- BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets
考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...
- bzoj2679:[Usaco2012 Open]Balanced Cow Subsets
思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...
- 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets
[算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...
- BZOJ.2679.Balanced Cow Subsets(meet in the middle)
BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...
- SPOJ-SUBSET Balanced Cow Subsets
嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...
随机推荐
- 点击劫持漏洞之理解 python打造一个挖掘点击劫持漏洞的脚本
前言: 放假了,上个星期刚刚学习完点击劫持漏洞.没来的及写笔记,今天放学总结了一下 并写了一个检测点击劫持的脚本.点击劫持脚本说一下哈.= =原本是打算把网站源码 中的js也爬出来将一些防御的代码匹配 ...
- Java SE学习笔记 --->高级类特性 ---> toString() 方法
概述: toString() 方法在面向对象当中十分常见,使用频率很高,和equals() 方法一样,也是Object类中定义的方法. jdk中 源码: java.lang.Object类中ToStr ...
- Roundcube Webmail信息泄露漏洞(CVE-2015-5383)
Preface Software: https://roundcube.net/Versions: 1.1.x<1.1.2(亲测1.1.5也有效)CVE: CVE-2015-5383Author ...
- java使用Myeclipse创建Hibernate项目碰到的诸多问题总结
这两天一直在搞Myeclipse创建Hibernate的1对多映射. 由于缺乏经验,可算是把我坑惨了.控制台是不停地报错啊~~~~我差点就崩溃了. 1.看的是慕课网的Hibernate一对多映射教程, ...
- 基于Python的数据分析(1):配置安装环境
数据分析是一个历史久远的东西,但是直到近代微型计算机的普及,数据分析的价值才得到大家的重视.到了今天,数据分析已经成为企业生产运维的一个核心组成部分. 据我自己做数据分析的经验来看,目前数据分析按照使 ...
- 大型进销存管理系统源码 家电业 电器类进销存 asp.net C#框架
系统详细信息点击查看 系统功能模块,系统管理: 部门管理 ,用户管理 ,角色管理 ,菜单管理 ,参数设置 商品管理: 类型管理 ,品牌管理 ,名称管理 ,型号管理 ,仓库管理 ,商家管理 ,单位管理 ...
- php中的抽象方法和抽象类,简单明了,一点通
1.什么是抽象方法? 我们在类里面定义的没有方法提的方法就是抽象方法.所谓的没有方法体指的是,在声明的时候没有大括号以及其中的内容,而是直接在声明时在方法名后加上分号结束,另外在声明抽象方法时方 ...
- hadoop 2.x 简单实现wordCount
简单实现hadoop程序,包括:hadoop2.x的实现写法 import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs ...
- maven 编译出错Fatal error compiling: 无效的目标发行版: 1.8 -> [Help 1] 解决办法
这几天在为公司项目搭建一个后台框架,使用的是eclipse-Mars自带的maven插件,在maven进行编译的时候,出现Fatal error compiling: 无效的目标发行版: 1.8 -& ...
- PHP访问数据库配置通用方法
提取一种对数据库配置的通用方式 目的是通过通用类访问配置文件的方式,提供对数据库连接的动态获取和设置,使开发时和生产应用时都能够提供灵活的.简化的.解耦的操作方式.比如在配置文件中配置好两套数据库访问 ...