集合之深入理解HashMap
Hashmap是一种非常常用的、应用广泛的数据类型
1、hashmap的数据结构
要知道hashmap是什么,首先要搞清楚它的数据结构,在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,hashmap也不例外。Hashmap实际上是一个数组和链表的结合体(在数据结构中,一般称之为“链表散列“),请看下图(横排表示数组,纵排表示数组元素【实际上是一个链表】)。
从图中我们可以看到一个hashmap就是一个数组结构,当新建一个hashmap的时候,就会初始化一个数组。我们来看看java代码:
- /**
- * The table, resized as necessary. Length MUST Always be a power of two.
- * FIXME 这里需要注意这句话,至于原因后面会讲到
- */
- transient Entry[] table;
- static class Entry<K,V> implements Map.Entry<K,V> {
- final K key;
- V value;
- final int hash;
- Entry<K,V> next;
- ..........
- }
上面的Entry就是数组中的元素,它持有一个指向下一个元素的引用,这就构成了链表。
当我们往hashmap中put元素的时候,先根据key的hash值得到这个元素在数组中的位置(即下标),然后就可以把这个元素放到对应的位置中了。如果这个元素所在的位子上已经存放有其他元素了,那么在同一个位子上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。从hashmap中get元素时,首先计算key的hashcode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。从这里我们可以想象得到,如果每个位置上的链表只有一个元素,那么hashmap的get效率将是最高的,但是理想总是美好的,现实总是有困难需要我们去克服,哈哈~
2、hash算法
我们可以看到在hashmap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过hashmap的数据结构是数组和链表的结合,所以我们当然希望这个hashmap里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表。
所以我们首先想到的就是把hashcode对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,能不能找一种更快速,消耗更小的方式那?java中时这样做的,
- static int indexFor(int h, int length) {
- return h & (length-1);
- }
首先算得key得hashcode值,然后跟数组的长度-1做一次“与”运算(&)。看上去很简单,其实比较有玄机。比如数组的长度是2的4次方,那么hashcode就会和2的4次方-1做“与”运算。很多人都有这个疑问,为什么hashmap的数组初始化大小都是2的次方大小时,hashmap的效率最高,我以2的4次方举例,来解释一下为什么数组大小为2的幂时hashmap访问的性能最高。
看下图,左边两组是数组长度为16(2的4次方),右边两组是数组长度为15。两组的hashcode均为8和9,但是很明显,当它们和1110“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到同一个链表上,那么查询的时候就需要遍历这个链表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hashcode的值会与14(1110)进行“与”,那么最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!
所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。
说到这里,我们再回头看一下hashmap中默认的数组大小是多少,查看源代码可以得知是16,为什么是16,而不是15,也不是20呢,看到上面annegu的解释之后我们就清楚了吧,显然是因为16是2的整数次幂的原因,在小数据量的情况下16比15和20更能减少key之间的碰撞,而加快查询的效率。
所以,在存储大容量数据的时候,最好预先指定hashmap的size为2的整数次幂次方。就算不指定的话,也会以大于且最接近指定值大小的2次幂来初始化的,代码如下(HashMap的构造方法中):
且最接近指定值大小的2次幂来初始化的,代码如下(HashMap的构造方法中):
- // Find a power of 2 >= initialCapacity
- int capacity = 1;
- while (capacity < initialCapacity)
- capacity <<= 1;
3、hashmap的resize
当hashmap中的元素越来越多的时候,碰撞的几率也就越来越高(因为数组的长度是固定的),所以为了提高查询的效率,就要对hashmap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,所以这是一个通用的操作,很多人对它的性能表示过怀疑,不过想想我们的“均摊”原理,就释然了,而在hashmap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。
那么hashmap什么时候进行扩容呢?当hashmap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,也就是说,默认情况下,数组大小为16,那么当hashmap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知hashmap中元素的个数,那么预设元素的个数能够有效的提高hashmap的性能。比如说,我们有1000个元素new HashMap(1000), 但是理论上来讲new HashMap(1024)更合适,不过上面annegu已经说过,即使是1000,hashmap也自动会将其设置为1024。 但是new HashMap(1024)还不是更合适的,因为0.75*1000 < 1000, 也就是说为了让0.75 * size >1000, 我们必须这样new HashMap(2048)才最合适,既考虑了&的问题,也避免了resize的问题。
4、key的hashcode与equals方法改写
在第一部分hashmap的数据结构中,annegu就写了get方法的过程:首先计算key的hashcode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。所以,hashcode与equals方法对于找到对应元素是两个关键方法。
Hashmap的key可以是任何类型的对象,例如User这种对象,为了保证两个具有相同属性的user的hashcode相同,我们就需要改写hashcode方法,比方把hashcode值的计算与User对象的id关联起来,那么只要user对象拥有相同id,那么他们的hashcode也能保持一致了,这样就可以找到在hashmap数组中的位置了。如果这个位置上有多个元素,还需要用key的equals方法在对应位置的链表中找到需要的元素,所以只改写了hashcode方法是不够的,equals方法也是需要改写滴~当然啦,按正常思维逻辑,equals方法一般都会根据实际的业务内容来定义,例如根据user对象的id来判断两个user是否相等。
在改写equals方法的时候,需要满足以下三点:
(1) 自反性:就是说a.equals(a)必须为true。
(2) 对称性:就是说a.equals(b)=true的话,b.equals(a)也必须为true。
(3) 传递性:就是说a.equals(b)=true,并且b.equals(c)=true的话,a.equals(c)也必须为true。
通过改写key对象的equals和hashcode方法,我们可以将任意的业务对象作为map的key(前提是你确实有这样的需要)。
总结:
本文主要描述了HashMap的结构,和hashmap中hash函数的实现,以及该实现的特性,同时描述了hashmap中resize带来性能消耗的根本原因,以及将普通的域模型对象作为key的基本要求。尤其是hash函数的实现,可以说是整个HashMap的精髓所在,只有真正理解了这个hash函数,才可以说对HashMap有了一定的理解。
集合之深入理解HashMap的更多相关文章
- 深入理解JAVA集合系列一:HashMap源码解读
初认HashMap 基于哈希表(即散列表)的Map接口的实现,此实现提供所有可选的映射操作,并允许使用null值和null键. HashMap继承于AbstractMap,实现了Map.Cloneab ...
- Java 集合系列10之 HashMap详细介绍(源码解析)和使用示例
概要 这一章,我们对HashMap进行学习.我们先对HashMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用HashMap.内容包括:第1部分 HashMap介绍第2部分 HashMa ...
- java集合框架之java HashMap代码解析
java集合框架之java HashMap代码解析 文章Java集合框架综述后,具体集合类的代码,首先以既熟悉又陌生的HashMap开始. 源自http://www.codeceo.com/arti ...
- 深入Java集合学习系列:HashMap的实现原理--转
原文出自:http://www.cnblogs.com/xwdreamer/archive/2012/06/03/2532832.html 1. HashMap概述: HashMap是基于哈希表的Ma ...
- 转:深入Java集合学习系列:HashMap的实现原理
1. HashMap概述: HashMap是基于哈希表的Map接口的非同步实现(Hashtable跟HashMap很像,唯一的区别是Hashtalbe中的方法是线程安全的,也就是同步的).此实现提供所 ...
- Map接口下的集合和泛型理解
一.Map接口 1. Map接口就是最顶层了,上面没有继承了.Map是一个容器接口,它与前面学的List.Set容器不同的是前面学的这些容器,一次只能传入一个元素,但是Map容器一次可以传入一对元素( ...
- 【转】Java 集合系列10之 HashMap详细介绍(源码解析)和使用示例
概要 这一章,我们对HashMap进行学习.我们先对HashMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用HashMap.内容包括:第1部分 HashMap介绍第2部分 HashMa ...
- Java基础知识强化之集合框架笔记64:Map集合之ArrayList嵌套HashMap
1. ArrayList集合嵌套HashMap集合并遍历. 需求: 假设ArrayList集合的元素是HashMap.有3个. 每一个HashMap集合的键和值都是字 ...
- 深入理解HashMap+ConcurrentHashMap的扩容策略
前言 理解HashMap和ConcurrentHashMap的重点在于: (1)理解HashMap的数据结构的设计和实现思路 (2)在(1)的基础上,理解ConcurrentHashMap的并发安全的 ...
随机推荐
- 【.NetCore】基于jenkins以及gitlab的持续编译及发布
前沿 其实本来是想把标题叫做持续集成的,只是后来看看研究出的内容,就只有发布这一个动作,自动化测试等内容也未涉及到,所以改名叫持续编译及发布应该更加贴切吧? 问题背景 其实目前我们传统方式上的发布方式 ...
- SSM 使用 mybatis 分页插件 pagehepler 实现分页
使用分页插件的原因,简化了sql代码的写法,实现较好的物理分页,比写一段完整的分页sql代码,也能减少了误差性. Mybatis分页插件 demo 项目地址:https://gitee.com/fre ...
- css3新单位vw、vh的使用详解
响应式布局的单位我们第一时间会想到通过rem单位来实现适配,但是它还需要内嵌一段脚本去动态计算跟元素大小. 比如: (function (doc, win) { let docEl = doc.doc ...
- Maven-06: 插件的内置绑定
Maven的生命周期与插件相互绑定,用以完成实际的构建任务.具体而言,是生命周期的阶段与插件的目标相互绑定,以完成某个具体的构建任务.例如项目编译这一任务,它对应default生命周期的compile ...
- 线程池的submit和execute方法区别
线程池中的execute方法大家都不陌生,即开启线程执行池中的任务.还有一个方法submit也可以做到,它的功能是提交指定的任务去执行并且返回Future对象,即执行的结果.下面简要介绍一下两者的三个 ...
- 设计模式 --> (11)桥接模式
桥接模式 将抽象部分与它的实现部分分离,使它们都可以独立地变化. 适用性: 1.当一个对象有多个变化因素的时候,考虑依赖于抽象的实现,而不是具体的实现.如上面例子中手机品牌有2种变化因素,一个是品牌, ...
- android中xml tools属性详解(转)
第一部分 安卓开发中,在写布局代码的时候,ide可以看到布局的预览效果. 但是有些效果则必须在运行之后才能看见,比如这种情况:TextView在xml中没有设置任何字符,而是在activity中设置了 ...
- Leetcode 14——Longest Common Prefix
题目:Write a function to find the longest common prefix string amongst an array of strings. 很简单的一个描述,最 ...
- Linux系统安装gcc/g++详细过程
下载: http://ftp.gnu.org/gnu/gcc/gcc-4.5.1/gcc-4.5.1.tar.bz2 浏览: http://ftp.gnu.org/gnu/gcc/gcc-4.5.1/ ...
- 200行Python代码实现2048
200行Python代码实现2048 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到桌面 ...