1. 梯度计算式导出

我们在博客《统计学习:逻辑回归与交叉熵损失(Pytorch实现)》中提到,设\(w\)为权值(最后一维为偏置),样本总数为\(N\),\(\{(x_i, y_i)\}_{i=1}^N\)为训练样本集。样本维度为\(D\),\(x_i\in \mathbb{R}^{D+1}\)(最后一维扩充),\(y_i\in\{0, 1\}\)。则逻辑回归的损失函数为:

\[\mathcal{l}(w) = \sum_{i=1}^{N}\left[y_{i} \log \pi_{w}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-\pi_w\left(x_{i}\right)\right)\right]
\]

这里

\[\begin{aligned}
\pi_w(x) = p(y=1 \mid x; w) =\frac{1}{1+\exp \left(-w^{T} x\right)}
\end{aligned}
\]

写成这个形式就已经可以用诸如Pytorch这类工具来进行自动求导然后采用梯度下降法求解了。不过若需要用表达式直接计算出梯度,我们还需要将损失函数继续化简为:

\[\mathcal{l}(w) = -\sum_{i=1}^N(y_i w^T x_i - \log(1 + \exp(w^T x_i)))
\]

可将梯度表示如下:

\[\nabla_w{\mathcal{l}(w)} = -\sum_{i=1}^N(y_i - \frac{1}{\exp(-w^Tx)+1})x_i
\]

2. 基于Spark的并行化实现

逻辑回归的目标函数常采用梯度下降法求解,该算法的并行化可以采用如下的Map-Reduce架构:

先将第\(t\)轮迭代的权重广播到各worker,各worker计算一个局部梯度(map过程),然后再将每个节点的梯度聚合(reduce过程),最终对参数进行更新。

在Spark中每个task对应一个分区,决定了计算的并行度(分区的概念详间我们上一篇博客Spark: 单词计数(Word Count)的MapReduce实现(Java/Python))。在Spark的实现过程如下:

  • map阶段: 各task运行map()函数对每个样本\((x_i, y_i)\)计算梯度\(g_i\), 然后对每个样本对应的梯度运行进行本地聚合,以减少后面的数据传输量。如第1个task执行reduce()操作得到\(\widetilde{g}_1 = \sum_{i=1}^3 g_i\) 如下图所示:

  • reduce阶段:使用reduce()将所有task的计算结果收集到Driver端进行聚合,然后进行参数更新。

在上图中,训练数据用points:PrallelCollectionRDD来表示,参数向量用\(w\)来表示,注意参数向量不是RDD,只是一个单独的参与运算的变量。

此外需要注意一点,虽然每个task在本地进行了局部聚合,但如果task过多且每个task本地聚合后的结果(单个gradient)过大那么统一传递到Driver端仍然会造成单点的网络平均等问题。为了解决这个问题,Spark设计了性能更好的treeAggregate()操作,使用树形聚合方法来减少网络和计算延迟。

3. PySpark实现代码

PySpark的完整实现代码如下:

from sklearn.datasets import load_breast_cancer
import numpy as np
from pyspark.sql import SparkSession
from operator import add
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score n_slices = 3 # Number of Slices
n_iterations = 300 # Number of iterations
alpha = 0.01 # iteration step_size def logistic_f(x, w):
return 1 / (np.exp(-x.dot(w)) + 1) def gradient(point: np.ndarray, w: np.ndarray) -> np.ndarray:
""" Compute linear regression gradient for a matrix of data points
"""
y = point[-1] # point label
x = point[:-1] # point coordinate
# For each point (x, y), compute gradient function, then sum these up
return - (y - logistic_f(x, w)) * x if __name__ == "__main__": X, y = load_breast_cancer(return_X_y=True) D = X.shape[1]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0)
n_train, n_test = X_train.shape[0], X_test.shape[0] spark = SparkSession\
.builder\
.appName("Logistic Regression")\
.getOrCreate() matrix = np.concatenate(
[X_train, np.ones((n_train, 1)), y_train.reshape(-1, 1)], axis=1) points = spark.sparkContext.parallelize(matrix, n_slices).cache() # Initialize w to a random value
w = 2 * np.random.ranf(size=D + 1) - 1
print("Initial w: " + str(w)) for t in range(n_iterations):
print("On iteration %d" % (t + 1))
g = points.map(lambda point: gradient(point, w)).reduce(add)
w -= alpha * g y_pred = logistic_f(np.concatenate(
[X_test, np.ones((n_test, 1))], axis=1), w)
pred_label = np.where(y_pred < 0.5, 0, 1)
acc = accuracy_score(y_test, pred_label)
print("iterations: %d, accuracy: %f" % (t, acc)) print("Final w: %s " % w)
print("Final acc: %f" % acc) spark.stop()

注意spark.sparkContext.parallelize(matrix, n_slices)中的n_slices就是Spark中的分区数。我们在代码中采用breast cancer数据集进行训练和测试,该数据集是个二分类数据集。模型初始权重采用随机初始化。

最后,我们来看一下算法的输出结果。

初始权重如下:

Initial w: [-0.0575882   0.79680833  0.96928013  0.98983501 -0.59487909 -0.23279241
-0.34157571 0.93084048 -0.10126002 0.19124314 0.7163746 -0.49597826
-0.50197367 0.81784642 0.96319482 0.06248513 -0.46138666 0.76500396
0.30422518 -0.21588114 -0.90260279 -0.07102884 -0.98577817 -0.09454256
0.07157487 0.9879555 0.36608845 -0.9740067 0.69620032 -0.97704433
-0.30932467]

最终的模型权重与在测试集上的准确率结果如下:

Final w: [ 8.22414803e+02  1.48384087e+03  4.97062125e+03  4.47845441e+03
7.71390166e+00 1.21510016e+00 -7.67338147e+00 -2.54147183e+00
1.55496346e+01 6.52930570e+00 2.02480712e+00 1.09860082e+02
-8.82480263e+00 -2.32991671e+03 1.61742379e+00 8.57741145e-01
1.30270454e-01 1.16399854e+00 2.09101988e+00 5.30845885e-02
8.28547658e+02 1.90597805e+03 4.93391021e+03 -4.69112527e+03
1.10030574e+01 1.49957834e+00 -1.02290791e+01 -3.11020744e+00
2.37012097e+01 5.97116694e+00 1.03680530e+02]
Final acc: 0.923977

可见我们的算法收敛良好。

参考

分布式机器学习:逻辑回归的并行化实现(PySpark)的更多相关文章

  1. 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

    在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...

  2. 机器学习/逻辑回归(logistic regression)/--附python代码

    个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(log ...

  3. 机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)

    逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn ...

  4. 机器学习——逻辑回归(Logistic Regression)

    1 前言 虽然该机器学习算法名字里面有"回归",但是它其实是个分类算法.取名逻辑回归主要是因为是从线性回归转变而来的. logistic回归,又叫对数几率回归. 2 回归模型 2. ...

  5. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  6. python机器学习-逻辑回归

    1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小: 而我们希望这样的f(x)能够具有很好的逻辑判断性质,最 ...

  7. Spark 机器学习------逻辑回归

    package Spark_MLlib import javassist.bytecode.SignatureAttribute.ArrayType import org.apache.spark.s ...

  8. python机器学习——逻辑回归

    我们知道感知器算法对于不能完全线性分割的数据是无能为力的,在这一篇将会介绍另一种非常有效的二分类模型--逻辑回归.在分类任务中,它被广泛使用 逻辑回归是一个分类模型,在实现之前我们先介绍几个概念: 几 ...

  9. 机器学习-逻辑回归与SVM的联系与区别

    (搬运工) 逻辑回归(LR)与SVM的联系与区别 LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类 ...

随机推荐

  1. 正则系列——JavaScript正则表达式入门心得

    我发现有个别字符被这个编辑器给刷掉了,但是灰色区域显示正常,以灰色区域代码为准 什么玩意? 在我刚开始学习编程的时候,就听过正则了,也听说正则很牛逼,懂正则的更牛逼.但是苦于没有人指点,也没有使用正则 ...

  2. 调试了一个早上, 定位了一个chrome的新问题, 新版chrome 不能有效的追踪客户来源Referer了

  3. Java三大结构

    Java三大结构 顺序结构(基本结构) 选择结构 循环结构 1. 顺序结构 平时一般语句都默认遵循顺序结构 2. 选择结构 2.1 if单选择结构 语法 if(布尔表达式){ //布尔表达式为true ...

  4. [转载] go get 拉取第三方包过慢、卡住解决方案

    修改go env,选用国内的代理地址下载.

  5. JavaWeb学习day6-Response初学

    web服务器接收到客户端的http请求,针对这个请求,分别创建一个代表请求的HttpSevletRequest对象,代表响应的一个HttpSevletResponse 如果要获取客户端请求过来的数据, ...

  6. Java 获取Word中的所有插入和删除修订

    在 Word 文档中启用跟踪更改功能后,会记录文档中的所有编辑行为,例如插入.删除.替换和格式更改.对插入或删除的内容,可通过本文中介绍的方法来获取. 引入Jar 方法1 手动引入:将 Free Sp ...

  7. vue下一代状态管理Pinia.js 保证你看的明明白白!

    1.pinia的简单介绍 Pinia最初是在2019年11月左右重新设计使用Composition API的 Vue 商店外观的实验. 从那时起,最初的原则相同,但 Pinia 适用于 Vue 2 和 ...

  8. XCTF练习题---MISC---hit-the-core

    XCTF练习题---MISC---hit-the-core flag:ALEXCTF{K33P_7H3_g00D_w0rk_up} 解题步骤: 1.观察题目,下载附件,发现是一个.core文件 2.打 ...

  9. C++实现矩阵类和向量类

    C++期末作业内容,写完之后觉得过于臃肿,又重新搞了个新的.新的当作业交,旧的拿来给同学参考. [问题描述]请仿照复数类,设计一个矩阵类,设计矩阵类的构成元素 1.编写构造函数完成初始化 2.编写成员 ...

  10. css盒子模型简析

    盒子模型分为标准盒子模型和怪异的盒子模型 1.标准的盒模型 (content-box) 你设置的宽和高(width/height)是内容的部分宽高,所以盒子的实际宽度=内容的宽高+boder+padd ...