L2M-GAN: Learning to Manipulate Latent Space Semantics for Facial Attribute Editing阅读笔记
面部属性编辑有两点要求:1、目标属性特征应当正确出现在编辑后的人脸上;2、任何不相关的面部特征均不应当在编辑后被修改。针对以上两点要求,面部属性编辑的解决方案有两类:1、空间感知;2、潜在空间的因子分解。空间感知假设被编辑特征有良好的局部性,但对于诸如性别、年龄等全局特征效果不好。潜在空间的因子分解旨在探索一个已经训练好的GAN模型的潜在空间,将其分解为与不同属性相关的部分。但这种策略不是端到端的训练,容易陷入局部最优解。 文章的L2M-GAN以一种端到端的方式实现了对潜在空间的任意特征的正交化拆解。
Methodology
文中并未提过网络细节,源代码也未公开训练代码,通过前项传播的evaluate过程汇总出如下网络细节,仅供参考。
PersonalOpinions
本文的特征解耦网络style transformer结构简单直观,用正交作损失进行优化,效果良好。人脸中的特征相互关联,尤其是一些全局特征,如年龄,身份,性别等无法通过空间感知进行特征分割,L2M-GAN为复杂全局特征的分割提供了一条可行路径,实现了编辑目标属性特征的同时,任何不相关的特征均不应当被明显修改。
L2M-GAN: Learning to Manipulate Latent Space Semantics for Facial Attribute Editing阅读笔记的更多相关文章
- 从一篇ICLR'2017被拒论文谈起:行走在GAN的Latent Space
同步自我的知乎专栏文章:https://zhuanlan.zhihu.com/p/32135185 从Slerp说起 ICLR'2017的投稿里,有一篇很有意思但被拒掉的投稿<Sampling ...
- 【RS】Local Latent Space Models for Top- N Recommendation-利用局部隐含空间模型进行Top-N推荐
[论文标题]Local Latent Space Models for Top- N Recommendation (KDD-2018 ) [论文作者]—Evangelia Christakopou ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks
[论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...
- [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...
- Deep Learning of Graph Matching 阅读笔记
Deep Learning of Graph Matching 阅读笔记 CVPR2018的一篇文章,主要提出了一种利用深度神经网络实现端到端图匹配(Graph Matching)的方法. 该篇文章理 ...
- 【转载】 《Human-level concept learning through probabilistic program induction》阅读笔记
原文地址: https://blog.csdn.net/ln1996/article/details/78459060 --------------------- 作者:lnn_csdn 来源:CSD ...
- [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks
[论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法 ...
随机推荐
- Microservices
Microservices What are Microservices? What are Microservices - microservices.io Microservices - mart ...
- java堆排序
直接贴源代码: package com.java.fmd; import java.util.Scanner; public class HeapSort { int[] arr; public st ...
- Input的校验表达式
1.只是不能输入空格 <input type="text" onkeyup="this.value=this.value.replace(/^ +| +$/g,'' ...
- Spring原始注解开发-02
使用@Repository.@Service.@Controller注解配置,使其更加清晰属于哪一层,因为我是模拟的web层,所有没有使用@Controller注解,后面结合web开发会使用到 1.创 ...
- JDBC 4.0 开始Java操作数据库不用再使用 Class.forName加载驱动类了
JDBC 4.0 开始Java操作数据库不用再使用 Class.forName加载驱动类了 代码示例 转自 https://docs.oracle.com/javase/tutorial/jdbc/o ...
- Postman+newman+jenkins+git实战
一.接口分类,流程,用例设计 接口分类: 外部接口:被测系统与外部其他系统之间的接口. 承保系统(被测系统),核算系统. 内部接口:被测系统内部各个子模块之间的接口. 承保系统(A模块,B模块) 测试 ...
- acwing刷题-放养又没有完全放养
题目 一个鲜为人知的事实是,奶牛拥有自己的文字:「牛文」. 牛文由 26 个字母 a 到 z 组成,但是当奶牛说牛文时,可能与我们所熟悉的 abcdefghijklmnopqrstuvwxyz 不同, ...
- git 在 pull 或者合并分支的时候会遇到下图这个界面
可以不管(直接进入 3, 4 步), 如果要输入解释的话就需要 按键盘字母 i 进入 insert 模式 修改最上面那行黄色合并信息,可以不修改 // 黄色内容为默认的合并信息; 按键盘左上角 & ...
- Revit二次开发之创建风管
在Revit中,风管用于连接管件,风道末端和机械设备,今天简单尝试了下使用RevitAPI创建风管,现分享下我的方法. 风管从类型上可分为三类:一般风管,软风管和风管占位符:从形状上也分为三类 ...
- i2c调试工具分享
i2c-tools简介 在嵌入式开发仲,有时候需要确认硬件是否正常连接,设备是否正常工作,设备的地址是多少等等,这里我们就需要使用一个用于测试I2C总线的工具--i2c-tools. i2c-tool ...