webrtc QOS笔记一 Neteq直方图算法浅读
webrtc QOS笔记一 Neteq直方图算法浅读
想起博客园帐号了,回来填点webrtc qos的坑, 本文分析个很好用的直方图算法,不仅可以在音频里面计算抖动延迟,我发现用来统计丢包率也很好用.
Histogram Algorithm
DelayManager::Update()->Histogram::Add() 会根据计算的iat_packet(inter arrival times, =实际包间间隔 / 打包时长),将该iat_packet插入IATVector直方图对应数组下标内。并更新该直方图的数据下标下概率参数。[M88 SRC]
一共有四步操作:
1、用遗忘因子,对历史数据的出现概率进行遗忘, 并统计概率合
2、增大本次计算到的IAT的概率值。
- 例:
假如历史bucket 数据为:
buckets_ = {0,0,1,0}
遗忘因子为 0.9:
forget_factor = 0.9
新来的抖动延迟数据为66ms, 桶间为20ms一个单位, 那插入位置为 66 / 20 = 3,则更新后
buckets = {0,0,0.9,0.1}
假若使用%95分位的值作为目标延迟, 则更新后的目标延迟为 60ms.
3、调整本次计算到的IAT的概率,使整个IAT的概率分布之和近似为1。调整方式为假设当前概率分布之和为tempSum,则:
4、更新forget_factor_, 使遗忘因子forget_factor_逼近base_forget_factor_
a.使用start_forget_weight_更新(默认初始值start_forget_weight_ = 2,base_forget_factor_=0.9993)
获取目标延迟
依据probability获取此百分位的值作为目标延迟(初始值0.97)
int Histogram::Quantile(int probability) {
// Find the bucket for which the probability of observing an
// inter-arrival time larger than or equal to |index| is larger than or
// equal to |probability|. The sought probability is estimated using
// the histogram as the reverse cumulant PDF, i.e., the sum of elements from
// the end up until |index|. Now, since the sum of all elements is 1
// (in Q30) by definition, and since the solution is often a low value for
// |iat_index|, it is more efficient to start with |sum| = 1 and subtract
// elements from the start of the histogram.
int inverse_probability = (1 << 30) - probability;
size_t index = 0; // Start from the beginning of |buckets_|.
int sum = 1 << 30; // Assign to 1 in Q30.
sum -= buckets_[index];
while ((sum > inverse_probability) && (index < buckets_.size() - 1)) {
// Subtract the probabilities one by one until the sum is no longer greater
// than |inverse_probability|.
++index;
sum -= buckets_[index];
}
return static_cast<int>(index);
}
遗忘因子曲线
测试曲线,调整遗忘因子提高抖动估计灵敏度:
#include <iostream>
#include <cstdint>
#include <vector>
uint32_t packet_loss_rate_ = 0;
int main()
{
std::vector<int> input;
std::vector<float> buckets;
float forget_factor = 0.9993;
float val = 0;
for (size_t k = 0; k < 1000; k ++) {
val = val * forget_factor + (1-forget_factor);
buckets.push_back(val);
}
for (int i = 0; i < 1000; ++i) {
std::cout << buckets[i]<< " ";
}
return 0;
}
webrtc QOS笔记一 Neteq直方图算法浅读的更多相关文章
- 决策树笔记:使用ID3算法
决策树笔记:使用ID3算法 决策树笔记:使用ID3算法 机器学习 先说一个偶然的想法:同样的一堆节点构成的二叉树,平衡树和非平衡树的区别,可以认为是"是否按照重要度逐渐降低"的顺序 ...
- webRTC中音频相关的netEQ(五):DSP处理
上篇(webRTC中音频相关的netEQ(四):控制命令决策)讲了MCU模块是怎么根据网络延时.抖动缓冲延时和反馈报告等来决定给DSP模块发什么控制命令的.DSP模块根据收到的命令进行相关处理,处理简 ...
- webRTC中音频相关的netEQ(三):存取包和延时计算
上篇(webRTC中音频相关的netEQ(二):数据结构)讲了netEQ里主要的数据结构,为理解netEQ的机制打好了基础.本篇主要讲MCU中从网络上收到的RTP包是怎么放进packet buffer ...
- webRTC中音频相关的netEQ(二):数据结构
上篇(webRTC中音频相关的netEQ(一):概述)是netEQ的概述,知道了它主要是用于解决网络延时抖动丢包等问题提高语音质量的,也知道了它有两大单元MCU和DSP组成.MCU 主要是把从网络收到 ...
- 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...
- 机器学习实战 - 读书笔记(11) - 使用Apriori算法进行关联分析
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(associat ...
- 从最大似然到EM算法浅解
从最大似然到EM算法浅解 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习十大算法之中的一个:EM算法.能评得上十大之中的一个,让人听起来认为挺NB的. ...
- webRTC中音频相关的netEQ(四):控制命令决策
上篇(webRTC中音频相关的netEQ(三):存取包和延时计算)讲了语音包的存取以及网络延时和抖动缓冲延时的计算,MCU也收到了DSP模块发来的反馈报告.本文讲MCU模块如何根据网络延时.抖动缓冲延 ...
- 机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集
机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米 ...
- 机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析
机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018 ...
随机推荐
- TCN代码详解-Torch (误导纠正)
TCN代码详解-Torch (误导纠正) 1. 绪论 TCN网络由Shaojie Bai, J. Zico Kolter, Vladlen Koltun 三人于2018提出.对于序列预测而言,通常考虑 ...
- C++初阶(list容器+模拟实现)
list介绍 list的本质是一个带头的双向循环链表. 链表是一种物理存储单元上非连续.非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的.链表由一系列结点(链表中每一个元素称为结点 ...
- vscode 更新后重启恢复旧版
vscode的自动更新自动安装在C:\Users\admin\AppData\Local\,如果之前的vscode不在默认位置,就会更新出两个版本,如果还用了固定在开始屏幕或者任务栏,则一直在打开旧版 ...
- 快速构建一个简单的Springboot-web项目
web项目基本的核心成分 数据落地 MYSQL数据库 登录标识 JWT :{Java web token } 记录有效登录状态 以及缓存常用数据: Redis 数据库与JAVA实体的快速自动映射ORM ...
- 深入浅出学习透析 Nginx 服务器的基本原理和配置指南「运维操作实战篇」
Nginx前提回顾 Nginx 是一个高性能的 Web 和反向代理服务器, 它具有有很多非常优越的特性: Web服务器:相比 Apache,Nginx 使用更少的资源,支持更多的并发连接,体现更高的效 ...
- Tekton 设计简介 及 实践
本文是我对Tekton的实现原理和背后技术逻辑的理解,以及在实践过程中的一些总结. 简介 Tekton 是一个基于 Kubernetes 的云原生 CI/CD 开源(https://cd.founda ...
- 【kafka】JDBC source&sink connect实现数据从Oracle实时同步插入更新到PostgreSQL(PG)
〇.所需资料 1.JDBC connect的plugins下载地址(confluent) 一.Oracle建表 1.表规划 表名:Test_TimeFormat_Order.Test_Stress_O ...
- 【Java框架】SSM-Spring总结:IOC、DI、AOP、JDBC、事务管理、实际案例
〇.概述 1.常用资料 2.组成 一.控制反转与依赖注入 (一)Spring概述 1.介绍 以IOC和AOP为内核的框架 通过IOC实现控制,使用spring创建对象,与DI描述同一个概念 DI是对象 ...
- ArcObjects SDK开发 014 MapSurround和普通Element
1.如何获取MapSurround 和获取MapFrame类似,如果你已经获取指北针.比例尺等对象,可以通过IGraphicsContainer的FindFrame函数获取.如果没有,则通过IGrap ...
- mysql下载及环境配置
目录 mysql简介 mysql下载 启动mysql 系统mysql服务的启动 mysql虚拟环境配置 (可以直接看这个) 卸载说明 mysql简介 为什么是mysql? 虽然数据库软件有很多 但是操 ...