LG P3803 【模板】多项式乘法
\(\text{FFT}\) 模板
#include <cstdio>
#include <iostream>
#include <cmath>
#define re register
using namespace std;
const int N = 2e6 + 1e5;
int rev[N], n, m;
inline int read()
{
char ch = getchar(); int f = 1, x = 0;
while (ch < '0' || ch > '9') f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
return x * f;
}
const double Pi = acos(-1.0);
struct complex{
double x, y;
inline complex operator + (const complex &a) const {return complex{x + a.x, y + a.y};}
inline complex operator - (const complex &a) const {return complex{x - a.x, y - a.y};}
inline complex operator * (const complex &a) const {return complex{x * a.x - y * a.y, x * a.y + y * a.x};}
}a[N], b[N];
inline void FFT(complex *a, int lim, int inv)
{
if (lim == 1) return;
for(re int i = 0; i < lim; i++)
if (i < rev[i]) swap(a[i], a[rev[i]]);
for(re int mid = 1; mid < lim; mid <<= 1)
{
complex I = complex{cos(Pi / mid), inv * sin(Pi / mid)};
for(re int i = 0; i < lim; i += (mid << 1))
{
complex W = complex{1, 0};
for(re int j = 0; j < mid; j++, W = W * I)
{
complex x = a[i + j], y = W * a[i + j + mid];
a[i + j] = x + y, a[i + j + mid] = x - y;
}
}
}
}
int main()
{
n = read(), m = read();
for(re int i = 0; i <= n; i++) a[i].x = read();
for(re int i = 0; i <= m; i++) b[i].x = read();
int limit = 1;
while (limit <= n + m) limit <<= 1;
int bit = 0;
while ((1 << bit) < limit) ++bit;
for(re int i = 0; i < limit; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
FFT(a, limit, 1), FFT(b, limit, 1);
for(re int i = 0; i < limit; i++) a[i] = a[i] * b[i];
FFT(a, limit, -1);
for(re int i = 0; i <= n + m; i++) printf("%d ", (int)(a[i].x / limit + 0.5));
}
\(\text{NTT}\) 模板
#include <cstdio>
#include <iostream>
#define LL long long
#define re register
using namespace std;
const int N = 2e6 + 1e5;
const int P = 998244353, g = 3;
int n, m, rev[N], a[N], b[N];
inline void read(int &x)
{
x = 0; char ch = getchar(); int f = 1;
while (ch < '0' || ch > '9') f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
x *= f;
}
inline int fpow(int x, int y)
{
int res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = 1LL * res * x % P;
x = 1LL * x * x % P;
}
return res;
}
inline void NTT(int *a, int lim, int inv)
{
if (lim == 1) return;
for(re int i = 0; i < lim; i++)
if (i < rev[i]) swap(a[i], a[rev[i]]);
for(re int mid = 1; mid < lim; mid <<= 1)
{
int I = fpow(g, (P - 1) / (mid << 1));
if (inv == -1) I = fpow(I, P - 2);
for(re int i = 0; i < lim; i += (mid << 1))
{
int W = 1;
for(re int j = 0; j < mid; j++, W = 1LL * W * I % P)
{
LL x = a[i + j], y = 1LL * W * a[i + j + mid] % P;
a[i + j] = (x + y) % P, a[i + j + mid] = (x - y + P) % P;
}
}
}
}
int main()
{
read(n), read(m);
for(re int i = 0; i <= n; i++) read(a[i]);
for(re int i = 0; i <= m; i++) read(b[i]);
int limit = 1;
while (limit <= n + m) limit <<= 1;
int bit = 0;
while ((1 << bit) < limit) ++bit;
for(re int i = 0; i < limit; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
NTT(a, limit, 1), NTT(b, limit, 1);
for(re int i = 0; i < limit; i++) a[i] = 1LL * a[i] * b[i] % P;
NTT(a, limit, -1);
int inv = fpow(limit, P - 2);
for(re int i = 0; i <= n + m; i++) printf("%d ", 1LL * a[i] * inv % P);
}
LG P3803 【模板】多项式乘法的更多相关文章
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂
多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷P3803 【模板】多项式乘法(FFT)
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...
- 洛谷 P3803 【模板】多项式乘法(FFT)
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...
- 【luogu P3803】【模板】多项式乘法(FFT)
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...
- 洛谷P3803 【模板】多项式乘法 [NTT]
题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...
- 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)
题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...
随机推荐
- UEFI引导linux启动过程的顺序,及修改办法
注意这里我说的是 uefi 启动 启动过程顺序 正常安装完一个Linux系统,硬盘会被分成俩个分区,一块是 fat32 文件系统(启动项存放位置),一块是ext4 文件系统(也就是系统真正的安装位置) ...
- label studio 结合 MMDetection 实现数据集自动标记、模型迭代训练的闭环
前言 一个 AI 方向的朋友因为标数据集发了篇 SCI 论文,看着他标了两个多月的数据集这么辛苦,就想着人工智能都能站在围棋巅峰了,难道不能动动小手为自己标数据吗?查了一下还真有一些能够满足此需求的框 ...
- Shell及Linux常见易错题目题库-Shell/Linux-选择、简答、判断、编程
1.以下不合法的shell头是(不合法指运行会报错)( ) A. #!/bin/bash B. #-/bin/bash C. !#/bin/bash 答案:C 2.if [ $2 -a $2 = ...
- DeprecationWarning: collection.ensureIndex is deprecated. Use createIndexes instead
// 引入mongoose模块 const mongoose = require('mongoose'); // 链接数据库 mongoose.set('useCreateIndex', true) ...
- kestrel网络编程--开发redis服务器
1 文章目的 本文讲解基于kestrel开发实现了部分redis命令的redis伪服务器的过程,让读者了解kestrel网络编程的完整步骤,其中redis通讯协议需要读者自行查阅,文章里不做具体解析. ...
- 深入理解Whitelabel Error Page底层源码
深入理解Whitelabel Error Page底层源码 (一)服务器请求处理错误则转发请求url StandardHostValve的invoke()方法将根据请求的url选择正确的Context ...
- easygui 之integerbox()、enterbox()、multenterbox() 三种输入函数的使用
1.integerbox()函数:只可输入整数的输入框,默认输入范围为0-99 integerbox(msg="", title=" ", default=No ...
- Redis-03 Redis事务
需要特别注意,Redis 的命令是原子性的,而 Redis 的事务是非原子性的 事务相关命令 MULTI 命令 开启事务命令,Redis将操作命令逐个放到队列中,根据EXEC命令来原子化执行命令 EX ...
- @Transactional事务回滚异常:Transaction rolled back because it has been marked as rollback-only
问题描述 事务设置手动回滚:TransactionAspectSupport.currentTransactionStatus().setRollbackOnly() 代码需要返回比较友好的提示,但t ...
- JS生成下载文件
常用方式: /** * 生成下载文件 * @param {Object} filename * @param {Object} text */ function download(filename, ...