\(\text{FFT}\) 模板

#include <cstdio>
#include <iostream>
#include <cmath>
#define re register
using namespace std; const int N = 2e6 + 1e5;
int rev[N], n, m; inline int read()
{
char ch = getchar(); int f = 1, x = 0;
while (ch < '0' || ch > '9') f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
return x * f;
} const double Pi = acos(-1.0);
struct complex{
double x, y;
inline complex operator + (const complex &a) const {return complex{x + a.x, y + a.y};}
inline complex operator - (const complex &a) const {return complex{x - a.x, y - a.y};}
inline complex operator * (const complex &a) const {return complex{x * a.x - y * a.y, x * a.y + y * a.x};}
}a[N], b[N]; inline void FFT(complex *a, int lim, int inv)
{
if (lim == 1) return;
for(re int i = 0; i < lim; i++)
if (i < rev[i]) swap(a[i], a[rev[i]]);
for(re int mid = 1; mid < lim; mid <<= 1)
{
complex I = complex{cos(Pi / mid), inv * sin(Pi / mid)};
for(re int i = 0; i < lim; i += (mid << 1))
{
complex W = complex{1, 0};
for(re int j = 0; j < mid; j++, W = W * I)
{
complex x = a[i + j], y = W * a[i + j + mid];
a[i + j] = x + y, a[i + j + mid] = x - y;
}
}
}
} int main()
{
n = read(), m = read();
for(re int i = 0; i <= n; i++) a[i].x = read();
for(re int i = 0; i <= m; i++) b[i].x = read(); int limit = 1;
while (limit <= n + m) limit <<= 1;
int bit = 0;
while ((1 << bit) < limit) ++bit;
for(re int i = 0; i < limit; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1)); FFT(a, limit, 1), FFT(b, limit, 1);
for(re int i = 0; i < limit; i++) a[i] = a[i] * b[i];
FFT(a, limit, -1);
for(re int i = 0; i <= n + m; i++) printf("%d ", (int)(a[i].x / limit + 0.5));
}

\(\text{NTT}\) 模板

#include <cstdio>
#include <iostream>
#define LL long long
#define re register
using namespace std; const int N = 2e6 + 1e5;
const int P = 998244353, g = 3;
int n, m, rev[N], a[N], b[N]; inline void read(int &x)
{
x = 0; char ch = getchar(); int f = 1;
while (ch < '0' || ch > '9') f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
x *= f;
} inline int fpow(int x, int y)
{
int res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = 1LL * res * x % P;
x = 1LL * x * x % P;
}
return res;
} inline void NTT(int *a, int lim, int inv)
{
if (lim == 1) return;
for(re int i = 0; i < lim; i++)
if (i < rev[i]) swap(a[i], a[rev[i]]);
for(re int mid = 1; mid < lim; mid <<= 1)
{
int I = fpow(g, (P - 1) / (mid << 1));
if (inv == -1) I = fpow(I, P - 2);
for(re int i = 0; i < lim; i += (mid << 1))
{
int W = 1;
for(re int j = 0; j < mid; j++, W = 1LL * W * I % P)
{
LL x = a[i + j], y = 1LL * W * a[i + j + mid] % P;
a[i + j] = (x + y) % P, a[i + j + mid] = (x - y + P) % P;
}
}
}
} int main()
{
read(n), read(m);
for(re int i = 0; i <= n; i++) read(a[i]);
for(re int i = 0; i <= m; i++) read(b[i]); int limit = 1;
while (limit <= n + m) limit <<= 1;
int bit = 0;
while ((1 << bit) < limit) ++bit;
for(re int i = 0; i < limit; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1)); NTT(a, limit, 1), NTT(b, limit, 1);
for(re int i = 0; i < limit; i++) a[i] = 1LL * a[i] * b[i] % P;
NTT(a, limit, -1);
int inv = fpow(limit, P - 2);
for(re int i = 0; i <= n + m; i++) printf("%d ", 1LL * a[i] * inv % P);
}

LG P3803 【模板】多项式乘法的更多相关文章

  1. P3803 [模板] 多项式乘法 (FFT)

    Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...

  2. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  3. [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂

    多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...

  4. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  5. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  6. 洛谷P3803 【模板】多项式乘法(FFT)

    P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...

  7. 洛谷 P3803 【模板】多项式乘法(FFT)

    题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...

  8. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  9. 洛谷P3803 【模板】多项式乘法 [NTT]

    题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...

  10. 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)

    题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...

随机推荐

  1. GeoServer 2.15.0 开启跨域设置

    GeoServe老版本可能开启跨域设置比较麻烦,但2.15.0版本还是比较简单的. 首先找到安装目录下的 webapps\geoserver\WEB-INF\web.xml 文件,打开进行编辑,建议编 ...

  2. Zabbix与乐维监控对比分析(一)——架构、性能篇

    近年来,Zabbix凭借其近乎无所不能的监控及优越的性能一路高歌猛进,在开源监控领域独占鳌头:而作为后起的新锐IT监控平台--乐维监控,则不断吸收Zabbix,Prometheus等优秀开源平台的优点 ...

  3. python什么是异常?如何处理异常

    异常处理 什么是异常 异常是程序错误发生的信号.程序一旦出现错误,就会产生一个异常,如果程序中没有处理该异常,该异常就会抛出来,程序的运行也随即终止. 错误分为两种 1.语法错误 2.逻辑错误 如何处 ...

  4. 1、Idea自定义背景设置

    1.安装BackGroundImage插件.重启idea 2.按Ctrl+shift+A键,输入setBackGroundImage,设置图片

  5. 【转载】EXCEL VBA 自定义排序的三种方法

    何谓自定义排序,就是按指定的顺序对数据源进行排序呗.   共分享了三种方法: 第1种方法是系统自带的OrderCustom,优点是代码简洁,缺点是自定义序列有字符长度限制(255个). 第2种方法是字 ...

  6. TS学习笔记

    类型 类型 例子 描述 number 1,2,-2 任意数字 string 'hi',"hi" 任意字符串 boolean true,false 布尔值或者true false 字 ...

  7. 乾坤大挪移,如何将同步阻塞(sync)三方库包转换为异步非阻塞(async)模式?Python3.10实现。

    众所周知,异步并发编程可以帮助程序更好地处理阻塞操作,比如网络 IO 操作或文件 IO 操作,避免因等待这些操作完成而导致程序卡住的情况.云存储文件传输场景正好包含网络 IO 操作和文件 IO 操作, ...

  8. 分享自己亲测过的Visualstudio 2019中开发Typescript时,设置自动编译生成js,无需手工运行命令生成的方法。

    步骤1)右键web项目,添加 tsconfig.json文件. 步骤2)确保配置如下,编译版本可自行设置,这里主要关注编译目标目录和自动编译设置: { "compileOnSave" ...

  9. [图像处理] YUV图像处理入门5

    12 yuv420转换为rgb(opencv mat) yuv格式具有亮度信息和色彩信息分离的特点,但大多数图像处理操作都是基于RGB格式,而且自己造轮子工作量太大.因此通常都会将yuv转换为rgb, ...

  10. kafka详解(03) - kafka JAVA API

    kafka详解(03) - kafka JAVA API Producer (生产者)API 消息发送流程 Kafka的Producer发送消息采用的是异步发送的方式.在消息发送的过程中,涉及到了两个 ...