【人工智能】【Python】Matplotlib基础
Maplotlib
本文档由萌狼蓝天写于2022年7月24日
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 正常显示负号
(一)Matplotlib三层结构
- 容器层
- canvas
- figure
- axes
- 辅助显示层
- 添加x轴、y轴描述,标题等内容
- 图像层
- 绘制什么图像的声明
(二)画布创建、图像绘制、图像显示
# 创建画布
plt.figure()
x = [1,2,3,4,5] # x轴上数据
y = [3,5,8,13,21] # y轴上数据
plt.plot(x,y) # 绘制图像
plt.show() # 显示图像
(三)图像画布设置、图像保存
# 创建画布
plt.figure(figsize=(10,5),dpi=360)
# figsize设置宽高(物理),dpi设置像素(清晰度)。
# 上述语句 返回的是一个fig对象
# 【注意】plt.show() 会释放figure资源,如果在线上图像之后保存图片将只能保存空图片
x = [1,2,3,4,5] # x轴上数据
y = [3,5,8,13,21] # y轴上数据
plt.plot(x,y) # 绘制图像
plt.savefig("auto_create_test01.jpg") # 保存图像
plt.show() # 显示图像
import random
x = range(100)
y_a = [random.uniform(0,30) for i in x]
# 生成数的数量对应x,生成数的值为0-30之间的随机数
print(x)
print("---华丽的分割线---")
print(y_a)
range(0, 100)
---华丽的分割线---
[12.982672509679087, 4.148460810792916, 23.28235249294327, 21.87989699514037, 2.769903367325226, 25.81845792348358, 3.54269402963334, 2.585603726507065, 26.353567263372167, 20.1724515831709, 9.846906537087849, 18.642794021897725, 28.003744340329156, 16.872567782729124, 21.612800689540776, 11.990215915808118, 17.191944072247612, 14.599968428883773, 8.928751599348555, 28.84921690440148, 1.5811419916444414, 28.347437767253062, 4.1844970314337395, 1.4484554776084402, 23.746856993211154, 25.215123023800903, 8.308284357407098, 20.905033782595766, 1.7060361916369626, 25.824999733060757, 25.861418590294413, 18.934895151240344, 29.156472327174725, 19.73204522971468, 27.62189040636267, 4.0745889532346355, 0.8561484814978759, 16.990698526758948, 13.695538355532968, 19.102876219033302, 26.73750193106295, 8.874796595298546, 19.63252230758577, 5.410863374583021, 28.959501437890072, 13.141025987347465, 11.963738613483583, 10.134532811707164, 2.4713136683034986, 26.003968284802426, 14.971877506465844, 14.571620590922555, 29.08039067376321, 2.2940372824311894, 8.146485905161393, 0.7551511667468636, 25.783877538176437, 19.827089802343014, 6.316807614490154, 12.191817760896198, 29.265434441425686, 1.4430630147755286, 27.15559634706954, 25.33537321637355, 14.537826820603485, 14.752792676788385, 1.8704608188174754, 13.895073232049324, 22.79035528366605, 11.12232898307558, 5.16784304566163, 22.837175426537577, 4.0677013250654435, 27.975154486709634, 3.286664382643265, 10.632525108000943, 4.411311190562859, 10.723165062794324, 29.44814886086931, 20.408896064347594, 15.803205938537028, 16.523604028883916, 19.623136101583274, 4.321189078434246, 29.106159249131583, 10.836444462865161, 7.254473087449349, 2.884588234408815, 13.263596148346446, 17.293710076942403, 21.826173895085446, 29.465860746443976, 21.558510008254462, 13.979606990999239, 23.065135048263528, 6.406772645073375, 17.224958179811374, 23.067953124213787, 29.055332612173245, 0.046758792875690736]
plt.figure(figsize=(10,5),dpi=300)# 创建画布
plt.plot(x,y_a) # 绘画
plt.show() # 显示
(四)自定义x、y轴的刻度
- plt.xticks(x,**kwargs) # x 表示要刻度的值
- plt.yticks(y,**kwargs) # y 表示要刻度的值
x = range(100)
y_a = [random.uniform(0,50) for i in x]
plt.figure(figsize=(25,5),dpi=300)# 创建画布
plt.plot(x,y_a) # 绘画
# 构造x轴刻度标签
x_ticks_label = ["零点{}分".format(i) for i in x]
# 构造y轴刻度
y_ticks = range(60)
# 修改x、y轴刻度显示
plt.xticks(x[::5],x_ticks_label[::5])
plt.yticks(y_ticks[::5])
# ::5 意味着 从头到尾 每间隔5取
#【注意】第一个参数必须是数字,如果不是数字需要进行值的替换
plt.show()
(五)添加网格显示
x = range(100)
y_a = [random.uniform(0,50) for i in x]
plt.figure(figsize=(25,5),dpi=300)# 创建画布
plt.plot(x,y_a) # 绘画
# 构造x轴刻度标签
x_ticks_label = ["零点{}分".format(i) for i in x]
# 构造y轴刻度
y_ticks = range(60)
# 修改x、y轴刻度显示
plt.xticks(x[::5],x_ticks_label[::5])
plt.yticks(y_ticks[::5])
# ::5 意味着 从头到尾 每间隔5取
#【注意】第一个参数必须是数字,如果不是数字需要进行值的替换
plt.grid(True,linestyle="--",alpha=0.5) # 添加网格
# 第一个参数(boolean) 是否添加
# 第二个参数(linestyle) 曲线还是直线
# 第三个参数 (alpha)透明度
plt.show()
(六)添加描述信息、一图多线、显示图例
x = range(50)
y_a = [random.uniform(0,50) for i in x]
y_b = [random.uniform(0,50) for i in x]
plt.figure(figsize=(10,5),dpi=300)# 创建画布
plt.plot(x,y_a) # 绘画
plt.plot(x,y_b) # 绘画
x_ticks_label = ["零点{}分".format(i) for i in x]
y_ticks = range(60)
plt.xticks(x[::5],x_ticks_label[::5])
plt.yticks(y_ticks[::5])
plt.grid(True,linestyle="--",alpha=0.5) # 添加网格
# 添加描述
plt.title("Just Play",fontsize=24)
plt.xlabel("时间")
plt.ylabel("温度")
# 显示图例
plt.plot(x,y_a,color="r",linestyle="-",label="A") # 绘画
plt.plot(x,y_b,color="b",linestyle="--",label="B") # 绘画
plt.legend(loc="upper right")# 显示图例必须在绘制时设置好
plt.show()
图例图形风格设置参考表
颜色字符 | 对应颜色 |
---|---|
r | 红色 |
g | 绿色 |
b | 蓝色 |
w | 白色 |
c | 青色 |
m | 洋红色 |
y | 黄色 |
k | 黑色 |
风格字符 | 对应风格 |
---|---|
- | 实线 |
-- | 虚线 |
-. | 点划线 |
: | 点虚线 |
'' | 留空、空格 |
(七)多坐标系绘制
x = range(50)
y_a = [random.uniform(0,50) for i in x]
y_b = [random.uniform(0,50) for i in x]
# plt.figure(figsize=(10,5),dpi=300)# 创建画布
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,5),dpi=300)
x_ticks_label = ["零点{}分".format(i) for i in x]
y_ticks = range(60)
# plt.xticks(x[::5],x_ticks_label[::5])
# plt.yticks(y_ticks[::5])
axes[0].set_xticks(x[::5])
axes[0].set_yticks(y_ticks[::5])
axes[1].set_xticks(x[::5])
axes[1].set_yticks(y_ticks[::5])
axes[1].set_xticklabels(x_ticks_label[::5])
# 添加描述
# plt.title("Just Play",fontsize=24)
axes[0].set_title("Just Play A",fontsize=24)
axes[1].set_title("Just Play B",fontsize=24)
# plt.xlabel("时间")
# plt.ylabel("温度")
axes[0].set_ylabel("摄氏度")
axes[1].set_ylabel("华氏度")
axes[0].set_xlabel("21日数据")
axes[1].set_xlabel("22日数据")
# 显示图例
# plt.plot(x,y_a,color="r",linestyle="-",label="A") # 绘画
# plt.plot(x,y_b,color="b",linestyle="--",label="B") # 绘画
axes[0].plot(x,y_a,color="r",linestyle="-",label="A")
axes[1].plot(x,y_b,color="b",linestyle="--",label="B")
# plt.legend(loc="upper right")# 显示图例必须在绘制时设置好
axes[0].legend(loc="upper right")# 显示图例必须在绘制时设置好
axes[1].legend(loc="upper right")# 显示图例必须在绘制时设置好
# 添加网格
# plt.grid(True,linestyle="--",alpha=0.5) # 添加网格
axes[0].grid(True,linestyle="--",alpha=0.5)
axes[1].grid(True,linestyle="-.",alpha=1)
plt.show()
(八)常见图形绘制
1.绘制数学函数图像
import numpy as np
# 准备数据
x = np.linspace(-10,10,1000) # 从-10到10 生成1000个数据(数据越多,线条越顺畅自然)
y = np.sin(x)
# 创建画布
plt.figure(figsize=(5,2.5),dpi=300)
# 绘制函数图像
plt.plot(x,y)
# 添加网格显示
plt.grid()
# 显示图像
plt.show()
2.散点图
# 数据准备
import random
x = range(30)
y = [random.uniform(30,60) for i in x]
# 创建画布
plt.figure(figsize=(10,5),dpi=300)
# 图像绘制
plt.scatter(x,y)
# 图像显示
plt.show()
3.柱状图
data_name = ['我是路人甲','山哥之王','山鸡之王','山崖传说','神秘姥爷','嘎腰子传说','嘤呜','我直呼好家伙',"乌拉","一拳一个"]
data_love = [1684,8664,8469,6468,5381,6584,1466,6458,4476,6584]
x = range(len(data_name))
y = data_love
plt.figure(figsize=(15,3),dpi=100)
plt.bar(x,y,width=0.5,color=["r","g","b","m","y","c","k"],align="center") # 对齐方式有edge和center两种
plt.xticks(x,data_name,fontsize=12)
plt.show()
4.直方图
x = np.random.normal(50,10,1000) # (均值,标准差,个数)
y = range(50)
plt.figure(figsize=(15,3),dpi=100)
plt.hist(x,bins=50,density=True, color='g', alpha=1)
plt.show()
5.饼状图
x = [random.randint(0,10) for i in range(5)] # 随机生成5个数,每个数的值在0-9之间
plt.figure(figsize=(15,3),dpi=100)
plt.pie(x) # x:数量,会根据数量自动计算百分比 labels:每部分的名城 autopct:占比显示指定 %1.2f%% colors:每部分的颜色
plt.show()
【人工智能】【Python】Matplotlib基础的更多相关文章
- 自兴人工智能------------python入门基础(2)列表和元祖
一.通用序列操作: 列表中所有序列都可以进行特定的操作,包括索引(indexing).分片(slicing).序列相加(adding).乘法,成员资格,长度,最小值,最大值,下面会一一介绍这些操作法. ...
- 自兴人工智能-------------Python入门基础(1)
Python 是一门简单易学且功能强大的编程语言. 它拥有高效的高级数据结构, 并且能够用简单而又高效的方式进行面向对象编程. Python 优雅的语法和动态 类型,再结合它的解释性,使其在大多数平台 ...
- Python——matplotlib基础绘图函数示例
1. 2.饼图 (1) import matplotlib.pyplot as plt labels='frogs','hogs','dogs','logs'% sizes=[15,30,45,10] ...
- 2018传智黑马Python人工智能视频教程(基础+就业+面试)
2018传智黑马Python人工智能视频教程(基础+就业+面试) 2018传智黑马Python人工智能视频教程(基础+就业+面试) 2018传智黑马Python人工智能视频教程(基础+就业+面试) 下 ...
- 小白必看Python视频基础教程
Python的排名从去年开始就借助人工智能持续上升,现在它已经成为了第一名.Python的火热,也带动了工程师们的就业热.可能你也想通过学习加入这个炙手可热的行业,可以看看Python视频基础教程,小 ...
- Python数据分析基础教程
Python数据分析基础教程(第2版)(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1_FsReTBCaL_PzKhM0o6l0g 提取码:nkhw 复制这段内容后 ...
- (数据分析)第02章 Python语法基础,IPython和Jupyter Notebooks.md
第2章 Python语法基础,IPython和Jupyter Notebooks 当我在2011年和2012年写作本书的第一版时,可用的学习Python数据分析的资源很少.这部分上是一个鸡和蛋的问题: ...
- Python - matplotlib 数据可视化
在许多实际问题中,经常要对给出的数据进行可视化,便于观察. 今天专门针对Python中的数据可视化模块--matplotlib这块内容系统的整理,方便查找使用. 本文来自于对<利用python进 ...
- python可视化基础
常用的python可视化工具包是matplotlib,seaborn是在matplotlib基础上做的进一步封装.入坑python可视化,对有些人来说如同望山跑死马,心气上早输了一节.其实学习一门新知 ...
- 『Python基础-1 』 编程语言Python的基础背景知识
#『Python基础-1 』 编程语言Python的基础背景知识 目录: 1.编程语言 1.1 什么是编程语言 1.2 编程语言的种类 1.3 常见的编程语言 1.4 编译型语言和解释型语言的对比 2 ...
随机推荐
- .NET混合开发解决方案7 WinForm程序中通过NuGet管理器引用集成WebView2控件
系列目录 [已更新最新开发文章,点击查看详细] WebView2组件支持在WinForm.WPF.WinUI3.Win32应用程序中集成加载Web网页功能应用.本篇主要介绍如何在WinForm ...
- java高级用法之:JNA中的Function
目录 简介 function的定义 Function的实际应用 总结 简介 在JNA中,为了和native的function进行映射,我们可以有两种mapping方式,第一种是interface ma ...
- (Bezier)贝塞尔曲在路径规划的运用
前言 之前被安排了活,一个局部区域机器运动控制的工作,大致是一个机器位于一个极限区域时候,机器要进入一个特殊的机制,使得机器可以安全的走出来.其中用到了bezier曲线进行优化路径,今天写一下,正好也 ...
- zabbix 添加监控交换机温度item
首先需要获取到交换机温度对应的OID,可以官方文档进行查询(多为私有OID),以盛科为例 官方文档查询到温度节点对于的OID为 10.0.3.102 1.3.6.1.4.1.27975.37.1.3. ...
- 构建AR视频空间大数据平台(物联网及工业互联网、视频、AI场景识别)
目 录 1. 应用背景... 2 2. 系统框架... 2 3. AI场景识别算法和硬件... 3 4. AR视频空间管理系统... 5 5. ...
- 如何在 pyqt 中自定义工具提示 ToolTip
前言 Qt 自带的工具提示样式不太好看,就算加了样式表也时不时会失效,同时工具提示没有阴影,看起来就更难受了.所以本篇博客将会介绍自定义工具提示的方法,效果如下图所示: 实现过程 工具提示其实就是一个 ...
- 关于我学git这档子事
创建本地分支并切换到该分支 git checkout -b *** 相当于如下2个命令: git branch *** git checkout *** 推送本地开发分支到远程开发分支 git pus ...
- C++:最大子数组差
最大子数组差 内存限制:128 MiB 时间限制:1000 ms 题目描述: 给定一个整数数组,找出两个不重叠的子数组A和B,使两个子数组和的差的绝对值|SUM(A) - SUM(B) ...
- 查询语句写了limit 1,为什么依然很慢?
摘要: 很多时候计算引擎会对语句进行代价估计并调整语句的执行顺序.执行计划是语句如何执行的直观表达.语句如何执行不能只关注语句写法,要想写出符合预期执行顺序的查询语句,还需要关注语句执行计划. 本文分 ...
- Spring Authorization Server(AS)从 Mysql 中读取客户端、用户
Spring AS 持久化 jdk version: 17 spring boot version: 2.7.0 spring authorization server:0.3.0 mysql ver ...