模拟赛:树和森林(lct.cpp) (树形DP,换根DP好题)
题面
题解
先解决第一个子问题吧,它才是难点
Subtask_1
我们可以先用一个简单的树形DP处理出每棵树内部的dis和,记为dp0[i],
然后再用一个换根的树形DP处理出每棵树内点 i 到树内每个点的距离和,记为dp[i],
好,现在分两个连通块跟三个连通块两种情况讨论
两个连通块
把两棵树A,B合并到一起,我们得先确定两个连接的点,
若其分别为 i,j,不难发现答案就是 dp0[A] + dp0[B] + dp[i] * size[B] + dp[j] * size[A] + size[A] * size[B]
其中,dp0[A],dp0[B],size[A],size[B]都是确定的,那么当答案取最大的时候,dp[i]、dp[j]一定分别都取最大
所以在两棵树中找dp值最大的两个点 i , j 就行了。
三个连通块
两条边连接三棵树,幸运的是,大的情况只有三种(A-B-C , A-C-B , B-A-C)
其中一棵树一定连了两条边,且不一定是同一个点连出去,不妨设中间那棵为B
注意到中间那条绿色的路径没?也就是说中间是可能有两个点的
若连接的两个点分别为 i,j,那么仔细开动一下脑筋,会发现总的贡献是
其中随着 i,j 变化的只有
因此,若以B树上每个节点为 i 考虑,我们可以用一个简单的换根DP求出上式的最大值,记为dp2[i],然后再求出B树中最大的dp2[i],加到上面三排的式子中,答案就出来了。
Subtask_2
子问题二其实更简单,不用管它的第二个条件,因为它只有0~1个解。
原图是个森林,是很多树组成,所以先考虑叶子结点,叶子结点如果是黑的,它的父边就不能删,如果是白的,它的父边就必须删;然后消除它父边的影响,再把叶子删去。这样一来,又有新的叶子,重复考虑……可以发现,最后要么无解,要么只有一个解,而且很好输出。
CODE
#include<map>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 100005
#define LL unsigned long long
#define DB double
#define ENDL putchar('\n')
#define lowbit(x) ((-x)&(x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f=-f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s=getchar();}
return f*x;
}
const int MOD = 998244353;
int n,m,i,j,s,o,k;
vector<int> g[MAXN];
vector<int> id[MAXN];
char cl[MAXN];
int U[MAXN],V[MAXN];
int siz[MAXN],rt[10],cnt;
LL dp1[MAXN],dp2[MAXN],ma[MAXN],sm[MAXN],dp[MAXN];
LL dpu[MAXN],dpd[MAXN],dpa[MAXN];
vector<LL> pre[MAXN],suf[MAXN];
bool vis[MAXN],f[MAXN],ad[MAXN];
void dfs1(int x,int fa) {
vis[x] = 1;
siz[x] = 1;
dp1[x] = 0;
for(int i = 0;i < g[x].size();i ++) {
int y = g[x][i];
if(y != fa) {
dfs1(y,x);
siz[x] += siz[y];
dp1[x] += dp1[y] + (LL)siz[y];
}
}return ;
}
void dfs2(int x,int fa,int n) {
dp2[x] = 0;
if(fa) {
dp2[x] = (dp2[fa] + (dp1[fa] - (dp1[x] + (LL)siz[x]))) + (n-siz[x]);
}
dp[x] = dp1[x] + dp2[x];
ma[x] = dp[x];
sm[x] = siz[x] * (n-siz[x]);
for(int i = 0;i < g[x].size();i ++) {
int y = g[x][i];
if(y != fa) {
dfs2(y,x,n);
ma[x] = max(ma[x],ma[y]);
sm[x] += sm[y];
}
}
return ;
}
void dfs3(int x,int fa,int sizA,int sizB) {
dpd[x] = dp[x] * (LL)sizB + sizA *2ll* sizB;
LL pr = 0;
for(int i = 0;i < g[x].size();i ++) {
pre[x].push_back(pr);
int y = g[x][i];
if(y != fa) {
dfs3(y,x,sizA,sizB);
pr = max(pr,dpd[y] + sizA *1ll* sizB);
dpd[x] = max(dpd[x],dpd[y] + sizA *1ll* sizB);
}
}
pr = 0;
for(int i = (int)g[x].size()-1;i >= 0;i --) {
suf[x].push_back(pr);
int y = g[x][i];
if(y != fa) {
pr = max(pr,dpd[y] + sizA *1ll* sizB);
}
}
return ;
}
void dfs4(int x,int fa,int sizA,int sizB,int ad1,int ad2) {
dpu[x] = dp[x] * (LL)sizB + sizA *2ll* sizB;
if(fa) {
dpu[x] = max(dpu[x],max(dpu[fa],max(pre[fa][ad1],suf[fa][ad2])) + sizA *1ll* sizB);
}
dpa[x] = max(dpd[x],dpu[x]) + dp[x] * (LL)sizA;
for(int i = 0;i < g[x].size();i ++) {
int y = g[x][i];
if(y != fa) {
dfs4(y,x,sizA,sizB,i,(int)g[x].size()-1-i);
dpa[x] = max(dpa[x],dpa[y]);
}
}return ;
}
bool dfs5(int x,int fa,int ed) {
for(int i = 0;i < g[x].size();i ++) {
int y = g[x][i],idn = id[x][i];
if(y != fa) {
bool cg = dfs5(y,x,idn);
f[x] ^= cg;
}
}
if(f[x]) ad[ed] = 1;
return f[x];
}
int main() {
// freopen("lct.in","r",stdin);
// freopen("lct.out","w",stdout);
n = read();m = read();
scanf("%s",cl + 1);
for(int i = 1;i <= m;i ++) {
s = read();o = read();
U[i] = s;V[i] = o;
g[s].push_back(o);
g[o].push_back(s);
id[s].push_back(i);
id[o].push_back(i);
}
for(int i = 1;i <= n;i ++) {
if(!vis[i]) {
dfs1(i,0);
dfs2(i,0,siz[i]);
rt[++ cnt] = i;
}
}
LL ans1 = 0;
if(cnt == 2) {
ans1 = ma[rt[1]] * siz[rt[2]] + ma[rt[2]] * siz[rt[1]] + siz[rt[2]] *1ll* siz[rt[1]];
ans1 += sm[rt[1]] + sm[rt[2]];
}
else if(cnt == 3) {
LL DP1 = ma[rt[1]] * (LL)(n-siz[rt[1]]),D1 = siz[rt[1]] *1ll* (n-siz[rt[1]]);
LL DP2 = ma[rt[2]] * (LL)(n-siz[rt[2]]),D2 = siz[rt[2]] *1ll* (n-siz[rt[2]]);
LL DP3 = ma[rt[3]] * (LL)(n-siz[rt[3]]),D3 = siz[rt[3]] *1ll* (n-siz[rt[3]]);
dfs3(rt[1],0,siz[rt[2]],siz[rt[3]]);
dfs4(rt[1],0,siz[rt[2]],siz[rt[3]],0,0);
ans1 = max(ans1,dpa[rt[1]] + DP2 + DP3 + D1);
dfs3(rt[2],0,siz[rt[1]],siz[rt[3]]);
dfs4(rt[2],0,siz[rt[1]],siz[rt[3]],0,0);
ans1 = max(ans1,dpa[rt[2]] + DP1 + DP3 + D2);
dfs3(rt[3],0,siz[rt[1]],siz[rt[2]]);
dfs4(rt[3],0,siz[rt[1]],siz[rt[2]],0,0);
ans1 = max(ans1,dpa[rt[3]] + DP1 + DP2 + D3);
ans1 += sm[rt[1]] + sm[rt[2]] + sm[rt[3]];
}
printf("%lld\n",ans1);
for(int i = 1;i <= n;i ++) f[i] = (cl[i] == 'B' ? 1:0);
bool flag = 0;
for(int i = 1;i <= cnt;i ++) {
flag |= dfs5(rt[i],0,0);
}
if(flag) {
printf("-1\n");
}
else {
int cn = 0;
for(int i = 1;i <= m;i ++) {
if(ad[i]) cn ++;
}
printf("%d\n",cn);
for(int i = 1;i <= m;i ++) {
if(ad[i]) printf("%d ",i);
}
ENDL;
}
return 0;
}
模拟赛:树和森林(lct.cpp) (树形DP,换根DP好题)的更多相关文章
- [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- 树形dp换根,求切断任意边形成的两个子树的直径——hdu6686
换根dp就是先任取一点为根,预处理出一些信息,然后在第二次dfs过程中进行状态的转移处理 本题难点在于任意割断一条边,求出剩下两棵子树的直径: 设割断的边为(u,v),设down[v]为以v为根的子树 ...
- bzoj 3743 [Coci2015]Kamp——树形dp+换根
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...
- 【碳硫磷模拟赛】消失的+和* (树形DP)
好久没做过这么恶心的DP题了 题面 题面很简单,有一个计算式,由+号.*号.括号和小于10的正整数组成,现在所有的+和*(由于属于违禁词而)都被-号给和谐掉了,现在要求所有可能的原计算式的结果之和. ...
- 7.18 NOI模拟赛 树论 线段树 树链剖分 树的直径的中心 SG函数 换根
LINK:树论 不愧是我认识的出题人 出的题就是牛掰 == 他好像不认识我 考试的时候 只会写42 还有两个subtask写挂了 拿了37 确实两个subtask合起来只有5分的好成绩 父亲能转移到自 ...
- [题解](树形dp/换根)小x游世界树
2. 小x游世界树 (yggdrasi.pas/c/cpp) [问题描述] 小x得到了一个(不可靠的)小道消息,传说中的神岛阿瓦隆在格陵兰海的某处,据说那里埋藏着亚瑟王的宝藏,这引起了小x的好奇,但当 ...
- poj3585 Accumulation Degree(树形dp,换根)
题意: 给你一棵n个顶点的树,有n-1条边,每一条边有一个容量z,表示x点到y点最多能通过z容量的水. 你可以任意选择一个点,然后从这个点倒水,然后水会经过一些边流到叶节点从而流出.问你最多你能倒多少 ...
- 树链剖分(附带LCA和换根)——基于dfs序的树上优化
.... 有点懒: 需要先理解几个概念: 1. LCA 2. 线段树(熟练,要不代码能调一天) 3. 图论的基本知识(dfs序的性质) 这大概就好了: 定义: 1.重儿子:一个点所连点树size最大的 ...
随机推荐
- C#/VB.NET 在Word转PDF时生成目录书签
当我们在转换Word文档到PDF格式时,想保留Word文档的标题作为PDF书签,那么应该如何操作呢?那么本文将以C#及VB.NET代码为例,介绍如何在Word转PDF时生成目录书签.下面是具体方法和步 ...
- Java 基础常见知识点&面试题总结(上),2022 最新版!| JavaGuide
你好,我是 Guide.秋招即将到来,我对 JavaGuide 的内容进行了重构完善,公众号同步一下最新更新,希望能够帮助你. 基础概念与常识 Java 语言有哪些特点? 简单易学: 面向对象(封装, ...
- CSS(九):background(背景属性)
通过CSS背景属性,可以给页面元素添加背景样式. 背景属性可以设置背景颜色.背景图片.背景平铺.背景图像固定等. background-color(背景颜色) background-color属性定义 ...
- 物联网微消息队列MQTT介绍-EMQX集群搭建以及与SpringBoot整合
项目全部代码地址:https://github.com/Tom-shushu/work-study.git (mqtt-emqt 项目) 先看我们最后实现的一个效果 1.手机端向主题 topic111 ...
- 21.LVS负载均衡群集-DR群集
LVS负载均衡群集-DR群集 目录 LVS负载均衡群集-DR群集 数据包流向分析 DR模式的特点 LVS-DR中的ARP问题 IP地址冲突 解决办法 路由根据ARP表项,会将新来的请求报文转发给Rea ...
- 8.shell编程之免交互
shell编程之免交互 目录 shell编程之免交互 Here Document免交互 免交互定义 Here Document变量设定 多行的注释 expect expect 定义 expect基本命 ...
- Mybatisi和Spring整合源码分析
一.MybatisSpring的使用 1.创建 Maven 工程. 2.添加依赖,代码如下 <dependency> <groupId>org.mybatis</grou ...
- jetbrains 系列产品无限试用
无限试用插件 在线安装 需要添加第三方插件仓库地址 设置 -- Manage Plugins Reposition... -- + https://plugins.zhile.io plugins 中 ...
- python基础知识-day7(文件操作)
1.文件IO操作: 1)操作文件使用的函数是open() 2)操作文件的模式: a.r:读取文件 b.w:往文件里边写内容(先删除文件里边已有的内容) c.a:是追加(在文件基础上写入新的内容) d. ...
- [二进制漏洞]PWN学习之格式化字符串漏洞 Linux篇
目录 [二进制漏洞]PWN学习之格式化字符串漏洞 Linux篇 格式化输出函数 printf函数族功能介绍 printf参数 type(类型) flags(标志) number(宽度) precisi ...