车牌识别在高速公路中有着广泛的应用,比如我们常见的电子收费(ETC)系统和交通违章车辆的检测,除此之外像小区或地下

车库门禁也会用到,基本上凡是需要对车辆进行身份检测的地方都会用到。

一些背景:

车牌识别系统(Vehicle License Plate Recognition)是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常一个车牌识

别系统主要包括以下这四个部分:

•车辆图像获取

•车牌定位

•车牌字符分割

•车牌字符识别

我们再来看一下百科中对车牌识别技术的描述:

车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识

别等技术,识别车辆牌号、颜色等信息,目前最新的技术水平为字母和数字的识别率可达到 99.7%,汉字的识别率可达到 99%。

实现方式

我们这里不做太复杂的车辆动态识别,只演示从图像中识别车牌信息,车牌识别功能的实现方式大致分为两种,一种是自己编写

代码实现,另一种是借助第三方 API 接口实现。

自己实现

如果我们想要通过 Python 自己手动编码实现车牌识别功能,可以借助一些 Python 库,比如:OpenCV、TensorFlow 等,这种方

式因为每一个功能点都需要我们自己编码实现,所有会相对复杂一些,另一方面如果我们想要保证识别的准确性,可能需要做大

量的实验,也就是说会花费更多的时间。

第三方接口

现在已经有一些第三方平台实现好了车牌识别的功能,并且他们对外提供了 API 接口,我们只需要调用他们提供的接口即可,这

种方式实现就相对简单了一些,并且通常接口提供方对外提供的接口功能的准确性也是基本可以保证的,原因很简单,如果接口

功能太差的话,一是自己打脸,还有就是基本不会有什么人使用,也就失去了接口对外提供的价值了,另外第三方接口可能会收

取一定费用,因此,如果现实中我们具体实现的话要综合考虑。

具体实现

综合上面的情况,我们这里采用第三方接口的方式来实现车牌识别的功能,接口提供方我们选择百度云提供的接口,百度云接口

提供了免费额度,简单来说就是每天可以免费使用多少次,如果超过了这个次数就需要交钱什么的了,文档地址为:

https://cloud.baidu.com/doc/OCR/index.html,下面来看一下具体实现过程。

SDK 安装

百度云 SDK 对多种语言提供了支持,比如:Python、Java、C++、IOS、Android 等,这里我们安装 Python 版的 SDK,安装很

简单,使用 pip install baidu-aip 命令即可,SDK 支持 Python 的版本为:2.7+ 与 3.x,SDK 目录结构如下:

Python学习交流Q群:660193417####
├── README.md
├── aip // SDK 目录│
├── __init__.py // 导出类│
├── base.py // aip 基类│
├── http.py // http 请求│
└── ocr.py //OCR└── setup.py // setuptools 安装

创建应用

SDK 安装好后,我们接着需要创建应用了,这里需要一个百度账号或百度云账号,如果没有的话自己注册一个即可,登录及注册

地址为:https://login.bce.baidu.com/?redirect=http%3A%2F%2Fcloud.baidu.com%2Fcampaign%2Fcampus-

2018%2Findex.html,登录之后,我们将鼠标移动到登录头像位置,接着在弹出菜单中单击用户中心,如下图所示:


信息勾选完了之后,点击保存按钮。

接着将鼠标移动到左侧栏中 > 符号位置,再依次选择人工智能和文字识别,如下图所示:

点击之后会进入到下图中:

我们点击创建应用,进入下图中:

这里我们只需要填一下应用名称和下面的应用描述即可,填写完毕之后点击立即创建。

创建完后,我们再返回应用列表,如下图所示:

这里我们需要用到三个值:AppID、API Key 和 Secret Key。

具体实现

应用创建完了,我们就可以调用接口实现车牌识别功能了。

首先,我们要创建 AipOcr,AipOcr 是 OCR 的 Python SDK 客户端,为使用 OCR 的开发人员提供了一系列的交互方法,代码实

现也比较简单,如下所示:

from aip import AipOcr
# 自己的 APPID AK SKAPP_
ID = '自己的 App
ID'API_KEY = '自己的 Api Key'
SECRET_KEY = '自己的 Secret Key'
client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

在上面代码中,常量 APP_ID、API_KEY 和 SECRET_KEY 就是我们在查看应用列表时说的需要用到的常量值,这些值均为字符

串,用于标识用户,为访问做签名验证。

如果我们需要配置 AipOcr 的网络请求参数,可以在构造 AipOcr 之后调用接口设置参数,目前支持两个参数,看一下代码实现:

# 建立连接的超时时间,单位为毫秒
client.setConnectionTimeoutInMillis(5000)
# 通过打开的连接传输数据的超时时间,单位为毫秒client.setSocketTimeoutInMillis(5000)

总的来说通过接口方式实现车牌识别功能是比较简单的,以如下图为例:

实现代码如下:

from aip import AipOcrAPP_ID = '自己的 App ID'API_KEY = '自己的 Api Key'SECRET_KEY = '自己的 Secret Key'# 创建客户端对象client = AipOcr(APP_ID, API_KEY, SECRET_KEY)# 建立连接的超时时间,单位为毫秒client.setConnectionTimeoutInMillis(5000)# 通过打开的连接传输数据的超时时间,单位为毫秒client.setSocketTimeoutInMillis(5000)# 读取图片def get_file_content(filePath):    with open(filePath, 'rb') as fp:        return fp.read()image = get_file_content('car.jpeg')res = client.licensePlate(image)print('车牌号码:' + res['words_result']['number'])print('车牌颜色:' + res['words_result']['color'])

执行结果:

车牌号码:川QK9777车牌颜色:blue

上面代码实现的是对一张图片中的一个车牌进行识别,当然接口还支持对一张图片中的多个车牌进行识别,只需使用

licensePlate(image, options) 即可, 以如下图为例:

实现代码如下:

from aip import AipOcr
APP_ID = '自己的 App ID'API_KEY = '自己的 Api Key'SECRET_KEY = '自己的 Secret Key'# 创建客户端对象client = AipOcr(APP_ID, API_KEY, SECRET_KEY)# 建立连接的超时时间,单位为毫秒client.setConnectionTimeoutInMillis(5000)# 通过打开的连接传输数据的超时时间,单位为毫秒client.setSocketTimeoutInMillis(5000)
# 读取图片def get_file_content(filePath): with open(filePath, 'rb') as fp: return fp.read()
image = get_file_content('cars.png')options = {}# 参数 multi_detect 默认为 falseoptions['multi_detect'] = 'true'res = client.licensePlate(image, options)for wr in res['words_result']: print('车牌号码:' + wr['number']) print('车牌颜色:' + wr['color'])

执行结果:

车牌号码:京N6HZ61
车牌颜色:blue
车牌号码:鲁NS1A26
车牌颜色:blue

最后

本文我们先对车牌识别进行了一些介绍,之后利用百度云接口实现了单个和多个车牌的识别功能,通过本文我们可以对车牌识别

的相关概念和具体实现有一些了解。今天的分享到这里就结束了,下一章见啦!!!

交警也觉得妙——Python 识别车牌的更多相关文章

  1. OpenCV+Python识别车牌和字符分割的实现

    本篇文章主要基于python语言和OpenCV库(cv2)进行车牌区域识别和字符分割,开篇之前针对在python中安装opencv的环境这里不做介绍,可以自行安装配置! 车牌号检测需要大致分为四个部分 ...

  2. Python识别网站验证码

    http://drops.wooyun.org/tips/6313 Python识别网站验证码 Manning · 2015/05/28 10:57 0x00 识别涉及技术 验证码识别涉及很多方面的内 ...

  3. python识别验证码——PIL,pytesser,pytesseract的安装

    1.使用Python识别验证码需要安装Python的图像处理模块(PIL.pytesser.pytesseract) (安装过程需要pip,在我的Python中已经安装pip了,pip的安装就不在赘述 ...

  4. 移动端车牌识别/车牌OCR识别

    周末,小编约了朋友商场shopping. 开车进地下车库时,“滴”的一声,完成车牌录入:开车离开时,扫描二维码,输入车牌,完成停车收费.小编不禁感叹科技改变生活,人工智能给生活带来的便利. 车牌自动识 ...

  5. OpenCV进阶之路:神经网络识别车牌字符

    1. 关于OpenCV进阶之路 前段时间写过一些关于OpenCV基础知识方面的系列文章,主要内容是面向OpenCV初学者,介绍OpenCV中一些常用的函数的接口和调用方法,相关的内容在OpenCV的手 ...

  6. 用Python识别网站使用的技术

    在进行爬虫之前,一般我们都会对要爬取的网站进行识别,识别我们要爬取的网站所使用到的技术,这样才能更有利于我们爬虫工作的进行.所以在此介绍以下如何用Python去识别一个网站所使用到的技术. 环境:Py ...

  7. python识别html主要文本框

    在抓取网页的时候只想抓取主要的文本框,例如 csdn 中的主要文本框为下图红色框: 抓取的思想是,利用bs4查找所有的div,用正则筛选出每个div里面的中文,找到中文字数最多的div就是属于正文的d ...

  8. Python爬虫入门教程 60-100 python识别验证码,阿里、腾讯、百度、聚合数据等大公司都这么干

    常见验证码 之前的博客中已经解决了一些常见验证码的问题,但是验证码是层出不穷的,目前解决验证码除了通过常规手段解决以外,还可以通过人工智能领域的深度学习去解决 深度学习?! 无疑对爬虫coder提高了 ...

  9. python 识别图片文字

    今天群里有兄弟问如何把图片的文字给识别出来 对于python来说这不是小菜一碟吗,于是乎让pupilheart狠狠的吹了一波(哈哈,竟然没懂),下面将整个实现过程给大家实现下: 方法一:自己搞定ORC ...

随机推荐

  1. 从压测碰到的诡异断连问题聊聊Nginx的连接管理

    本文主要分享一个在压测Nginx反向代理服务过程中碰到的连接异常断开问题,包括问题的定位与复现,最后由这个实际问题引申聊一下Nginx的连接管理. 本博客已迁移至CatBro's Blog,那是我自己 ...

  2. IDEA打包javaFX及踩坑解决

    开门见山的说,先打包,再说坑. File-->Project Structure --> Artifacts-->(此处点加号)JAR-->From modules with ...

  3. [原创][开源]C# Winform DPI自适应方案,SunnyUI三步搞定

    SunnyUI.Net, 基于 C# .Net WinForm 开源控件库.工具类库.扩展类库.多页面开发框架 Blog: https://www.cnblogs.com/yhuse Gitee: h ...

  4. sa-token client登录逻辑

  5. 老生常谈系列之Aop--前言

    老生常谈系列之Aop--前言 前言 既然是前言,那么这一篇就不会写具体的技术问题.这篇文章主要记录我一些个人的思考以及为什么要写文章的缘由.前不久在跟朋友的交流中偶然聊到了Aop,Aop全称为 Asp ...

  6. numpy学习笔记Ⅰ

    一直被numpy和matplotlib困扰,打算好好学习一下,也是从自己的观点,学对自己帮助最大的部分 主要参考<https: www.runoob.com="" numpy ...

  7. C# 编写一个简单易用的 Windows 截屏增强工具

    半年前我开源了 DreamScene2 一个小而快并且功能强大的 Windows 动态桌面软件.有很多的人喜欢,这使我有了继续做开源的信心.这是我的第二个开源作品 ScreenshotEx 一个简单易 ...

  8. go 语言开发2 简易数据库和web代码示例

    数据库开发示例 package dao import ( "github.com/go-xorm/xorm" "fmt" ) type UserInfo str ...

  9. c++:-7

    上一节主要学习C++中的函数模版.数据结构以及排序查找操作:c++:-6,本节学习C++的范型程序设计和STL: 范型程序设计 编写不依赖于具体数据类型的程序 将算法从特定的数据结构中抽象出来,成为通 ...

  10. 解读论文《Agglomerative clustering of a search engine query log》,以解决搜索推荐相关问题

    <Agglomerative clustering of a search engine query log> 论文作者:Doug Beeferman 本文将解读此篇论文,此论文利用搜索日 ...