spacy词向量
spaCy能够比较两个对象,并预测它们的相似程度。 预测相似性对于构建推荐系统或标记重复项很有用。 例如,您可以建议与当前正在查看的用户内容相似的用户内容,或者将支持凭单标记为与现有内容非常相似的副本。
每个Doc、Span和Token都有一个.similarity()方法,它允许您将其与另一个对象进行比较,并确定相似度。当然,相似性总是主观的——“狗”和“猫”是否相似取决于你如何看待它。spaCy的相似模型通常假定一个相当通用的相似性定义。
tokens = nlp(u'dog cat banana')
for token1 in tokens:
for token2 in tokens:
print(token1.similarity(token2))
在这种情况下,模型的预测是很准确的。狗和猫非常相似,而香蕉却不是很相似。相同的标记显然是100%相似的(并不总是精确的1.0,因为向量数学和浮点数的不精确)。
相似性是通过比较词向量或“词嵌入”来确定的,即一个词的多维意思表示。单词向量可以通过像word2vec这样的算法生成,通常是这样的:
important note
为了使比较算法简洁和快速,spaCy的小模型(所有以sm结尾的包)都不使用单词向量,而且这些sm包只包含上下文相关的向量。这意味着您仍然可以使用similarity()方法来比较文档、span和token,但是结果不会很好,单个token不会有任何指定的向量。所以为了使用真正的词向量,你需要下载一个更大的模型:
python -m spacy download en_core_web_lg
内置单词向量的模型使它们成为可用的标记。Token.vector, Doc.vector, Span.vector。文本向量将默认为它们的token向量的平均值。您还可以检查一个token是否有分配的向量,并得到L2规范,它可以用来使向量标准化。
nlp = spacy.load('en_core_web_lg')
tokens = nlp(u'dog cat banana sasquatch')
for token in tokens:
print(token.text, token.has_vector, token.vector_norm, token.is_oov)
“dog”、“cat”和“banana”在英语中都很常见,所以它们是模型词汇的一部分,并且带有一个向量。另一方面,“sasquatch”这个词不太常见,也不太常见——所以它的向量表示包含了300个0的维度,这意味着它实际上是不存在的。如果您的应用程序需要包含更多向量的大型词汇表,那么您应该考虑使用一个较大的模型或装入一个完整的向量包,例如,en_vectors_web_lg,其中包含超过100万个唯一的向量。
基于上下文的相似度
除了spaCy内置的单词向量,还有一些根据上下文词汇训练的一些向量,解析、标记和NER模型也依赖于这种上下文中的单词含义的向量表示。当处理管道被应用时,spaCy将文档的内部含义表示为浮点数组,也称为张量。这使得spaCy可以根据周围的单词对单词的意思做出合理的猜测。即使spaCy以前没有见过这个单词,它也会有所了解。因为spaCy使用一个4层的卷积网络,所以张量对一个单词的任意一边的四个单词都很敏感。
例如,这里有三个句子,在不同的语境中包含了“labrador”的单词。
doc1 = nlp(u"The labrador barked.")
doc2 = nlp(u"The labrador swam.")
doc3 = nlp(u"the labrador people live in canada.")
#这边需要注意的是,导入模型不能是md,lg模型,这两个模型计算出来的三个结果是一样
for doc in [doc1, doc2, doc3]:
labrador = doc[1]
dog = nlp(u"dog")
print(labrador.similarity(dog))
尽管模型从来没有见过“labrador”这个词,但它可以很准确地预测它在不同情况下与“dog”的相似性。
整个文档也一样。 在这里,相似性的差异较小,因为所有单词及其顺序都被考虑在内。 但是,特定于上下文的相似性通常仍然非常准确地反映出来。
doc1 = nlp(u"Paris is the largest city in France.")
doc2 = nlp(u"Vilnius is the capital of Lithuania.")
doc3 = nlp(u"An emu is a large bird.")
for doc in [doc1, doc2, doc3]:
for other_doc in [doc1, doc2, doc3]:
print(doc.similarity(other_doc))
即使关于巴黎和维尔纽斯的句子由不同的词汇和实体组成,它们都描述了相同的概念,并被认为比关于ems的句子更相似。 在这种情况下,即使拼写错误的“维尔纽斯”版本仍然会产生非常相似的结果。
由相同单词组成的句子可能会被认为是非常相似的,但永远不会完全相同。
docs = [nlp(u"dog bites man"), nlp(u"man bites dog"),
nlp(u"man dog bites"), nlp(u"dog man bites")]
for doc in docs:
for other_doc in docs:
print(doc.similarity(other_doc))
有趣的是,“人咬狗”和“狗咬人”被认为比“人咬狗”和“狗咬人”更相似。这可能是一个巧合——或者是“人”被解释为两个句子的主语的结果。
spacy词向量的更多相关文章
- NLP︱词向量经验总结(功能作用、高维可视化、R语言实现、大规模语料、延伸拓展)
R语言由于效率问题,实现自然语言处理的分析会受到一定的影响,如何提高效率以及提升词向量的精度是在当前软件环境下,比较需要解决的问题. 笔者认为还存在的问题有: 1.如何在R语言环境下,大规模语料提高运 ...
- [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...
- 开源共享一个训练好的中文词向量(语料是维基百科的内容,大概1G多一点)
使用gensim的word2vec训练了一个词向量. 语料是1G多的维基百科,感觉词向量的质量还不错,共享出来,希望对大家有用. 下载地址是: http://pan.baidu.com/s/1boPm ...
- Deep Learning In NLP 神经网络与词向量
0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representati ...
- word2vec生成词向量原理
假设每个词对应一个词向量,假设: 1)两个词的相似度正比于对应词向量的乘积.即:$sim(v_1,v_2)=v_1\cdot v_2$.即点乘原则: 2)多个词$v_1\sim v_n$组成的一个上下 ...
- 学习笔记TF018:词向量、维基百科语料库训练词向量模型
词向量嵌入需要高效率处理大规模文本语料库.word2vec.简单方式,词送入独热编码(one-hot encoding)学习系统,长度为词汇表长度的向量,词语对应位置元素为1,其余元素为0.向量维数很 ...
- 词向量-LRWE模型
上一节,我们介绍利用文本和知识库融合训练词向量的方法,如何更好的融合这些结构化知识呢?使得训练得到的词向量更具有泛化能力,能有效识别同义词反义词,又能学习到上下文信息还有不同级别的语义信息. 基于上述 ...
- NLP︱高级词向量表达(三)——WordRank(简述)
如果说FastText的词向量在表达句子时候很在行的话,GloVe在多义词方面表现出色,那么wordRank在相似词寻找方面表现地不错. 其是通过Robust Ranking来进行词向量定义. 相关p ...
- NLP︱高级词向量表达(二)——FastText(简述、学习笔记)
FastText是Facebook开发的一款快速文本分类器,提供简单而高效的文本分类和表征学习的方法,不过这个项目其实是有两部分组成的,一部分是这篇文章介绍的 fastText 文本分类(paper: ...
- NLP︱高级词向量表达(一)——GloVe(理论、相关测评结果、R&python实现、相关应用)
有很多改进版的word2vec,但是目前还是word2vec最流行,但是Glove也有很多在提及,笔者在自己实验的时候,发现Glove也还是有很多优点以及可以深入研究对比的地方的,所以对其进行了一定的 ...
随机推荐
- PNAS:微生物组分析揭示人类皮肤的独特性
https://blog.csdn.net/woodcorpse/article/details/87989663
- Java-面向对象进阶 继承限制
1.子类可以继承父类的那些资源 private成员 子类和父类不在同一个包,使用默认访问权限的成员 构造方法
- 【11】python之循环
Python 中的循环语句有 for 和 while. 1.while 循环 Python 中 while 语句的一般形式: while 判断条件(condition): 执行语句(statement ...
- k8s master节点高可用 nginx+keepalived配置文件
nginx配置 user nginx; worker_processes auto; error_log /var/log/nginx/error.log; pid /run/nginx.pid; i ...
- 打卡node day01--基础和fs内置模块
一, 检查 node 版本 node -v 或 node --version 二,检查安装过的node 版本(nvm node 版本管理工具 安装链接 参考百度) nvm ls 三,切换node 版 ...
- js导出表格到excel(合并头)
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- .NET在单台Windows2008下百万TCP连接测试
测试客户端: 客户端程序建立TCP连接,发送一条几个字节的数据. 虚拟机8台,PC机8台,服务器1台. 设置MaxUserPort=60000,有一台机没有设置约在1.5万左右.最后因为差一点到100 ...
- 单文件WSDL,非模块化
最近在使用CXF做WebService Sever端,接口与实现类不在一个包下. 实现类如下: 1 @WebService(serviceName = "Demo" 2 , tar ...
- HCIA-ICT实战基础07-访问控制列表ACL进阶
HCIA-ICT实战基础-访问控制列表ACL进阶 目录 二层ACL技术及配置 高级ACL的扩展使用方法及使用场景 1 二层ACL技术及配置 1.1 二层ACL概念 使用报文的以太网帧头来定义规则, 根 ...
- WSL2与ensp的40故障
在使用ensp做radius认证的时候看到了Linux平台的freeradius认证服务器,于是使用了Windows平台的sub system: WSL2,按照网上的教程安装,并且安装了docker ...