Sup, inf convolution for convex functions
Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then
$u$ is locally bounded and locally Lipschitz continuous. If $\partial_{x_i}f(x_0)$ exists at $x_0$, then $u$ is differentiable at $x_0$. By standard analysis, there exists a hyperplande $L_{x_0}(x)$ at any $x_0\in\Omega$. Now we any get a clearly picture to see that $u$ is differentiable at $x_0\in\Omega$.
Suppose $u$ is convex function in $\Omega$ and $u\in C(\overline{\Omega})$, show that
\begin{align}
u^\epsilon(x)=\max_{y\in\bar{\Omega}}(u(y)-\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.
Since we can not find a direct relevant reference for the proof, we give one here.
Assume that
\begin{align}
u^\epsilon(x_0)=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let $L(y)=u(y_0)+p(y-y_0)$ be the support plane at $y_0$, then we have
\begin{align}
u^\epsilon(x)&\geq u(y)-\frac{1}{\epsilon}|x-y|^2\\
&\geq u(y_0)+p_{y_0}(y-y_0)-\frac{1}{\epsilon}|x-y|^2\\
&= L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2
\end{align}
Therefore,
\begin{align}
u^\epsilon(x_0)&=L_{y_0}(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
u^\epsilon(x)&\geq L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2.
\end{align}
The last inequality implies that
\begin{align}
u^\epsilon(x)\geq L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let
\begin{align}
l_{x_0}(x)&=L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
&=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2+p_0(x-x_0),
\end{align}
then
\begin{align}
u^\epsilon(x_0)=l_{x_0}(x_0),\\
u^\epsilon(x)\geq l_{x_0}(x).
\end{align}
Hence, $u^\epsilon(x)$ is convex in $\Omega_\epsilon$.
Similarly, we can prove that $u_\epsilon$ is also convex. But the proof is different, I don't know why?
Suppose $u$ is convex function, show that
\begin{align}
u^\epsilon(x)=\min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.
For any $x_1,x_2\in\Omega^\epsilon$, we have
\begin{align}
u^\epsilon(x_1)=u(y_1)+\frac{1}{\epsilon}|x_1-y_1|^2,\\
u^\epsilon(x_2)=u(y_2)+\frac{1}{\epsilon}|x_2-y_2|^2,
\end{align}
where $y_1,y_2\in\Omega$.
By convexity, for any $\lambda\in(0,1)$, we have
\begin{align*}
\lambda u^\epsilon(x_1)+(1-\lambda)u^\epsilon(x_2)&=\lambda u(y_1)+(1-\lambda)u(y_2)\\
&~~~~+\lambda\frac{1}{\epsilon}|x_1-y_1|^2
+(1-\lambda)\frac{1}{\epsilon}|x_2-y_2|^2\\
&\geq u(\lambda y_1+(1-\lambda)y_2)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-(\lambda y_1+(1-\lambda)y_2)|^2\\
&\geq \min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-y|^2)\\
=&u^\epsilon(\lambda x_1+(1-\lambda)x_2).
\end{align*}
Hence, $u^\epsilon(x)$ is convex.
Sup, inf convolution for convex functions的更多相关文章
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization
以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...
- Spatial convolution
小结: 1.卷积广泛存在与物理设备.计算机程序的smoothing平滑.sharpening锐化过程: 空间卷积可应用在图像处理中:函数f(原图像)经过滤器函数g形成新函数f-g(平滑化或锐利化的新图 ...
- Convex optimization 凸优化
zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 【论文翻译】NIN层论文中英对照翻译--(Network In Network)
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...
- CCJ PRML Study Note - Chapter 1.6 : Information Theory
Chapter 1.6 : Information Theory Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...
- [BOOK] Applied Math and Machine Learning Basics
<Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...
- 【翻译】给初学者的 Neural Networks / 神经网络 介绍
本文翻译自 SATYA MALLICK 的 "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...
- Keras 自适应Learning Rate (LearningRateScheduler)
When training deep neural networks, it is often useful to reduce learning rate as the training progr ...
随机推荐
- odoo Web Controllers 学习总结
环境 odoo-14.0.post20221212.tar Web Controllers Controllers 控制器需要提供可扩展性,就像Model,但不能使用相同的机制,因为先决条件(已加载模 ...
- ABAP SORT 递减/递增
排序 DESCENDING(递减) / ASCENDING(递增)只作用前字段 SORT LT_VBAK BY VBELN DESCENDING(递减). SORT LT_VBAK BY VBE ...
- Dynamics365 DOC
Sample: Early-bound table operationshttps://docs.microsoft.com/en-us/powerapps/developer/data-platfo ...
- Mysql数据库基础第六章:变量、存储过程与函数
Mysql数据库基础系列 软件下载地址 提取码:7v7u 数据下载地址 提取码:e6p9 mysql数据库基础第一章:(一)数据库基本概念 mysql数据库基础第一章:(二)mysql环境搭建 mys ...
- celery+redis的使用(异步任务、定时任务)
目录 celery理解 安装celery+redis 异步任务使用 1.基础使用 新建task.py文件 在项目文件目录下执行python交互式编程 在项目文件目录下创建worker消费任务 2.使用 ...
- windows运行xcopy计划任务 结果是0x4解决方案
近几天发现一直好好的数据备份计划任务一直返回0x4失败,直接执行bat又是正常的. bat命令中使用的是xcopy,到处找方案没解决. 今天意外在使用另一个命令时,发现提示:网络连接数据超过最大值. ...
- Lucky Chains(最大公约数的应用)
题目:Lucky Chains 题意: 给定两个正整数a, b,若(a, b) = (a + 1, b + 1) = (a + 2, b + 2) = ... = (a + k, b + k) = 1 ...
- Nginx 虚拟主机中配置 server_name ⼀个server块中配置多个站点 ⼀个站点配置多个⼆级域名
⼀个server块中配置多个站点 server { listen 80; server_name ~^(www.)?(.+)$; index index.php index.html; root /h ...
- function 和mapped function的区别
1 --在函数定义上使用mapped前缀将此函数标记为自动映射到集合上.这意味着,如果将集合作为函数的第一个参数,则该函数将在集合的元素上自动重复调用.这允许您定义脚本化函数,这些函数的行为方式与映射 ...
- Web学习篇—Http协议
Http协议简介 h3 { background: rgba(0, 154, 205, 1); color: rgba(255, 255, 255, 1); border-radius: 6px; f ...