Sup, inf convolution for convex functions
Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then
$u$ is locally bounded and locally Lipschitz continuous. If $\partial_{x_i}f(x_0)$ exists at $x_0$, then $u$ is differentiable at $x_0$. By standard analysis, there exists a hyperplande $L_{x_0}(x)$ at any $x_0\in\Omega$. Now we any get a clearly picture to see that $u$ is differentiable at $x_0\in\Omega$.
Suppose $u$ is convex function in $\Omega$ and $u\in C(\overline{\Omega})$, show that
\begin{align}
u^\epsilon(x)=\max_{y\in\bar{\Omega}}(u(y)-\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.
Since we can not find a direct relevant reference for the proof, we give one here.
Assume that
\begin{align}
u^\epsilon(x_0)=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let $L(y)=u(y_0)+p(y-y_0)$ be the support plane at $y_0$, then we have
\begin{align}
u^\epsilon(x)&\geq u(y)-\frac{1}{\epsilon}|x-y|^2\\
&\geq u(y_0)+p_{y_0}(y-y_0)-\frac{1}{\epsilon}|x-y|^2\\
&= L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2
\end{align}
Therefore,
\begin{align}
u^\epsilon(x_0)&=L_{y_0}(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
u^\epsilon(x)&\geq L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2.
\end{align}
The last inequality implies that
\begin{align}
u^\epsilon(x)\geq L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let
\begin{align}
l_{x_0}(x)&=L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
&=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2+p_0(x-x_0),
\end{align}
then
\begin{align}
u^\epsilon(x_0)=l_{x_0}(x_0),\\
u^\epsilon(x)\geq l_{x_0}(x).
\end{align}
Hence, $u^\epsilon(x)$ is convex in $\Omega_\epsilon$.
Similarly, we can prove that $u_\epsilon$ is also convex. But the proof is different, I don't know why?
Suppose $u$ is convex function, show that
\begin{align}
u^\epsilon(x)=\min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.
For any $x_1,x_2\in\Omega^\epsilon$, we have
\begin{align}
u^\epsilon(x_1)=u(y_1)+\frac{1}{\epsilon}|x_1-y_1|^2,\\
u^\epsilon(x_2)=u(y_2)+\frac{1}{\epsilon}|x_2-y_2|^2,
\end{align}
where $y_1,y_2\in\Omega$.
By convexity, for any $\lambda\in(0,1)$, we have
\begin{align*}
\lambda u^\epsilon(x_1)+(1-\lambda)u^\epsilon(x_2)&=\lambda u(y_1)+(1-\lambda)u(y_2)\\
&~~~~+\lambda\frac{1}{\epsilon}|x_1-y_1|^2
+(1-\lambda)\frac{1}{\epsilon}|x_2-y_2|^2\\
&\geq u(\lambda y_1+(1-\lambda)y_2)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-(\lambda y_1+(1-\lambda)y_2)|^2\\
&\geq \min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-y|^2)\\
=&u^\epsilon(\lambda x_1+(1-\lambda)x_2).
\end{align*}
Hence, $u^\epsilon(x)$ is convex.
Sup, inf convolution for convex functions的更多相关文章
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization
以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...
- Spatial convolution
小结: 1.卷积广泛存在与物理设备.计算机程序的smoothing平滑.sharpening锐化过程: 空间卷积可应用在图像处理中:函数f(原图像)经过滤器函数g形成新函数f-g(平滑化或锐利化的新图 ...
- Convex optimization 凸优化
zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 【论文翻译】NIN层论文中英对照翻译--(Network In Network)
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...
- CCJ PRML Study Note - Chapter 1.6 : Information Theory
Chapter 1.6 : Information Theory Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...
- [BOOK] Applied Math and Machine Learning Basics
<Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...
- 【翻译】给初学者的 Neural Networks / 神经网络 介绍
本文翻译自 SATYA MALLICK 的 "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...
- Keras 自适应Learning Rate (LearningRateScheduler)
When training deep neural networks, it is often useful to reduce learning rate as the training progr ...
随机推荐
- wordpress宕机原因及处理方法
2020年7月底,查看了网站日志,是wp-cron.php 导致异常. 原来这是WordPress定时任务,禁用即可. 在wp-config.php添加 /* 禁用定时任务 wp-cron */ de ...
- 13.OpenFeign测试远程调用
以会员服务调用优惠券服务为例 引入依赖 在之前创建微服务模块时已经引入了这个依赖,就不需要重复引入了 添加要被member微服务调用的coupon微服务的coupon的方法 在member微服务添加一 ...
- java开发环境搭建 (JDK卸载与安装、配置)
一.window系统下java环境搭建 1.卸载JDK 查看安装目录:此电脑 -> 右键选择属性 -> 高级系统设置 -> 环境变量 -> 查看系统变量那一栏中的JAVA_HO ...
- 深入理解JVM - 自动内存管理
对于从事C.C++程序开发的开发人员来说,在内存管理领域,他们既是拥有最高权力的"皇帝",又是从事最基础工作的劳动人民--既拥有每一个对象的"所有权",又担负着 ...
- web上传插件Uploadify
Uploadify简单说来,是基于Jquery的一款文件上传插件.它的功能特色总结如下: 支持单文件或多文件上传,可控制并发上传的文件数 在服务器端支持各种语言与之配合使用,诸如PHP,.NET,Ja ...
- vue3 loading 等待效果
一.自定义组件 loading.vue <template> <div class="loading" v-show="msg.show"&g ...
- [学习计划]mysql常用语句-随学随整理
<> 不等于 三元表达式 select *, if (num=1, "第一", "其他") as 别名 from 表 COUNT 统计总数并按某 ...
- # HUAWEI--IPv6 over IPv4隧道配置(简单案例)
HUAWEI--IPv6 over IPv4隧道配置(简单案例) 拓扑图 项目要求: PC3和PC4使用的IPv6的地址,路由和路由器之间的连接使用IPv4的地址并使用静态路由连接,路由器和PC机的连 ...
- PHP压缩二进制流转CSV文件
接口返回的数据是二进制流,需先BASE64解码,再进行解压缩,压缩的文件格式为ZIP,需使用Inflater进行解压,即可得到文件. java demo: 转成PHP代码: 贴上 原始二进制流数据,需 ...
- 最新2019Java调用百度智能云人脸识别流程
首先先注册账户 https://console.bce.baidu.com/?fromai=1#/aip/overview 点击链接 有账户直接登录 如无 则注册 进入控制台后 点击人脸识别 随便选 ...