Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then
$u$ is locally bounded and locally Lipschitz continuous. If $\partial_{x_i}f(x_0)$ exists at $x_0$, then $u$ is differentiable at $x_0$. By standard analysis, there exists a hyperplande $L_{x_0}(x)$ at any $x_0\in\Omega$. Now we any get a clearly picture to see that $u$ is differentiable at $x_0\in\Omega$.

Suppose $u$ is convex function in $\Omega$ and $u\in C(\overline{\Omega})$, show that
\begin{align}
u^\epsilon(x)=\max_{y\in\bar{\Omega}}(u(y)-\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.

Since we can not find a direct relevant reference for the proof, we give one here.

Assume that

\begin{align}
u^\epsilon(x_0)=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let $L(y)=u(y_0)+p(y-y_0)$ be the support plane at $y_0$, then we have
\begin{align}
u^\epsilon(x)&\geq u(y)-\frac{1}{\epsilon}|x-y|^2\\
&\geq u(y_0)+p_{y_0}(y-y_0)-\frac{1}{\epsilon}|x-y|^2\\
&= L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2
\end{align}

Therefore,
\begin{align}
u^\epsilon(x_0)&=L_{y_0}(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
u^\epsilon(x)&\geq L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2.
\end{align}
The last inequality implies that
\begin{align}
u^\epsilon(x)\geq L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}

Let
\begin{align}
l_{x_0}(x)&=L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
&=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2+p_0(x-x_0),
\end{align}
then
\begin{align}
u^\epsilon(x_0)=l_{x_0}(x_0),\\
u^\epsilon(x)\geq l_{x_0}(x).
\end{align}

Hence, $u^\epsilon(x)$ is convex in $\Omega_\epsilon$.

Similarly, we can prove that $u_\epsilon$ is also convex. But the proof is different, I don't know why?

Suppose $u$ is convex function, show that
\begin{align}
u^\epsilon(x)=\min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.

For any $x_1,x_2\in\Omega^\epsilon$, we have
\begin{align}
u^\epsilon(x_1)=u(y_1)+\frac{1}{\epsilon}|x_1-y_1|^2,\\
u^\epsilon(x_2)=u(y_2)+\frac{1}{\epsilon}|x_2-y_2|^2,
\end{align}
where $y_1,y_2\in\Omega$.

By convexity, for any $\lambda\in(0,1)$, we have
\begin{align*}
\lambda u^\epsilon(x_1)+(1-\lambda)u^\epsilon(x_2)&=\lambda u(y_1)+(1-\lambda)u(y_2)\\
&~~~~+\lambda\frac{1}{\epsilon}|x_1-y_1|^2
+(1-\lambda)\frac{1}{\epsilon}|x_2-y_2|^2\\
&\geq u(\lambda y_1+(1-\lambda)y_2)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-(\lambda y_1+(1-\lambda)y_2)|^2\\
&\geq \min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-y|^2)\\
=&u^\epsilon(\lambda x_1+(1-\lambda)x_2).
\end{align*}
Hence, $u^\epsilon(x)$ is convex.

Sup, inf convolution for convex functions的更多相关文章

  1. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  2. 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization

    以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...

  3. Spatial convolution

    小结: 1.卷积广泛存在与物理设备.计算机程序的smoothing平滑.sharpening锐化过程: 空间卷积可应用在图像处理中:函数f(原图像)经过滤器函数g形成新函数f-g(平滑化或锐利化的新图 ...

  4. Convex optimization 凸优化

    zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...

  5. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  6. 【论文翻译】NIN层论文中英对照翻译--(Network In Network)

    [论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...

  7. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  8. [BOOK] Applied Math and Machine Learning Basics

    <Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...

  9. 【翻译】给初学者的 Neural Networks / 神经网络 介绍

    本文翻译自 SATYA MALLICK 的  "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...

  10. Keras 自适应Learning Rate (LearningRateScheduler)

    When training deep neural networks, it is often useful to reduce learning rate as the training progr ...

随机推荐

  1. wordpress宕机原因及处理方法

    2020年7月底,查看了网站日志,是wp-cron.php 导致异常. 原来这是WordPress定时任务,禁用即可. 在wp-config.php添加 /* 禁用定时任务 wp-cron */ de ...

  2. 13.OpenFeign测试远程调用

    以会员服务调用优惠券服务为例 引入依赖 在之前创建微服务模块时已经引入了这个依赖,就不需要重复引入了 添加要被member微服务调用的coupon微服务的coupon的方法 在member微服务添加一 ...

  3. java开发环境搭建 (JDK卸载与安装、配置)

    一.window系统下java环境搭建 1.卸载JDK 查看安装目录:此电脑 -> 右键选择属性 -> 高级系统设置 -> 环境变量 -> 查看系统变量那一栏中的JAVA_HO ...

  4. 深入理解JVM - 自动内存管理

    对于从事C.C++程序开发的开发人员来说,在内存管理领域,他们既是拥有最高权力的"皇帝",又是从事最基础工作的劳动人民--既拥有每一个对象的"所有权",又担负着 ...

  5. web上传插件Uploadify

    Uploadify简单说来,是基于Jquery的一款文件上传插件.它的功能特色总结如下: 支持单文件或多文件上传,可控制并发上传的文件数 在服务器端支持各种语言与之配合使用,诸如PHP,.NET,Ja ...

  6. vue3 loading 等待效果

    一.自定义组件 loading.vue <template> <div class="loading" v-show="msg.show"&g ...

  7. [学习计划]mysql常用语句-随学随整理

    <>   不等于 三元表达式 select *, if (num=1, "第一", "其他") as 别名 from 表 COUNT 统计总数并按某 ...

  8. # HUAWEI--IPv6 over IPv4隧道配置(简单案例)

    HUAWEI--IPv6 over IPv4隧道配置(简单案例) 拓扑图 项目要求: PC3和PC4使用的IPv6的地址,路由和路由器之间的连接使用IPv4的地址并使用静态路由连接,路由器和PC机的连 ...

  9. PHP压缩二进制流转CSV文件

    接口返回的数据是二进制流,需先BASE64解码,再进行解压缩,压缩的文件格式为ZIP,需使用Inflater进行解压,即可得到文件. java demo: 转成PHP代码: 贴上 原始二进制流数据,需 ...

  10. 最新2019Java调用百度智能云人脸识别流程

    首先先注册账户 https://console.bce.baidu.com/?fromai=1#/aip/overview 点击链接 有账户直接登录  如无 则注册 进入控制台后 点击人脸识别 随便选 ...