Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then
$u$ is locally bounded and locally Lipschitz continuous. If $\partial_{x_i}f(x_0)$ exists at $x_0$, then $u$ is differentiable at $x_0$. By standard analysis, there exists a hyperplande $L_{x_0}(x)$ at any $x_0\in\Omega$. Now we any get a clearly picture to see that $u$ is differentiable at $x_0\in\Omega$.

Suppose $u$ is convex function in $\Omega$ and $u\in C(\overline{\Omega})$, show that
\begin{align}
u^\epsilon(x)=\max_{y\in\bar{\Omega}}(u(y)-\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.

Since we can not find a direct relevant reference for the proof, we give one here.

Assume that

\begin{align}
u^\epsilon(x_0)=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let $L(y)=u(y_0)+p(y-y_0)$ be the support plane at $y_0$, then we have
\begin{align}
u^\epsilon(x)&\geq u(y)-\frac{1}{\epsilon}|x-y|^2\\
&\geq u(y_0)+p_{y_0}(y-y_0)-\frac{1}{\epsilon}|x-y|^2\\
&= L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2
\end{align}

Therefore,
\begin{align}
u^\epsilon(x_0)&=L_{y_0}(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
u^\epsilon(x)&\geq L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2.
\end{align}
The last inequality implies that
\begin{align}
u^\epsilon(x)\geq L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}

Let
\begin{align}
l_{x_0}(x)&=L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
&=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2+p_0(x-x_0),
\end{align}
then
\begin{align}
u^\epsilon(x_0)=l_{x_0}(x_0),\\
u^\epsilon(x)\geq l_{x_0}(x).
\end{align}

Hence, $u^\epsilon(x)$ is convex in $\Omega_\epsilon$.

Similarly, we can prove that $u_\epsilon$ is also convex. But the proof is different, I don't know why?

Suppose $u$ is convex function, show that
\begin{align}
u^\epsilon(x)=\min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.

For any $x_1,x_2\in\Omega^\epsilon$, we have
\begin{align}
u^\epsilon(x_1)=u(y_1)+\frac{1}{\epsilon}|x_1-y_1|^2,\\
u^\epsilon(x_2)=u(y_2)+\frac{1}{\epsilon}|x_2-y_2|^2,
\end{align}
where $y_1,y_2\in\Omega$.

By convexity, for any $\lambda\in(0,1)$, we have
\begin{align*}
\lambda u^\epsilon(x_1)+(1-\lambda)u^\epsilon(x_2)&=\lambda u(y_1)+(1-\lambda)u(y_2)\\
&~~~~+\lambda\frac{1}{\epsilon}|x_1-y_1|^2
+(1-\lambda)\frac{1}{\epsilon}|x_2-y_2|^2\\
&\geq u(\lambda y_1+(1-\lambda)y_2)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-(\lambda y_1+(1-\lambda)y_2)|^2\\
&\geq \min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-y|^2)\\
=&u^\epsilon(\lambda x_1+(1-\lambda)x_2).
\end{align*}
Hence, $u^\epsilon(x)$ is convex.

Sup, inf convolution for convex functions的更多相关文章

  1. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  2. 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization

    以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...

  3. Spatial convolution

    小结: 1.卷积广泛存在与物理设备.计算机程序的smoothing平滑.sharpening锐化过程: 空间卷积可应用在图像处理中:函数f(原图像)经过滤器函数g形成新函数f-g(平滑化或锐利化的新图 ...

  4. Convex optimization 凸优化

    zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...

  5. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  6. 【论文翻译】NIN层论文中英对照翻译--(Network In Network)

    [论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...

  7. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  8. [BOOK] Applied Math and Machine Learning Basics

    <Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...

  9. 【翻译】给初学者的 Neural Networks / 神经网络 介绍

    本文翻译自 SATYA MALLICK 的  "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...

  10. Keras 自适应Learning Rate (LearningRateScheduler)

    When training deep neural networks, it is often useful to reduce learning rate as the training progr ...

随机推荐

  1. 98、TypeError: f.upload.addEventListener is not a function

    https://blog.csdn.net/qq_42202633/article/details/123083927 在分片上传时遇到的这个问题

  2. [NepCTF2022]signin

    signin 题目 from Crypto.Util.number import getStrongPrime,bytes_to_long from gmpy2 import powmod,is_pr ...

  3. element-ui下表格头部字段hover显示tips信息

    记录一下表格头部加hover之后显示tips信息循环,或单独的el-table-column都可以哦 <el-table-column             prop="name&q ...

  4. D8-16K加密锁配置流程

    1.vscode安装yttool插件,可在拓展商店中搜索ext:yt即可找到. 补充地址:https://marketplace.visualstudio.com/items?itemName=ytk ...

  5. Minio服务器搭建

    记录Minio服务器搭建过程 参考 1.下载minio 从地址https://min.io/download#/windows 下载minio server和minio client. 2.将两个ex ...

  6. 获取select的选中的值

    var select = document.getElementById("sec")//获取元素 var idx = select.selectedIndex;//获取当前选中的 ...

  7. java对象序列化byte[] 和 byte[]反序列化对象

    import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOExceptio ...

  8. 硬件IIC的重映射使用问题

    目录 沁恒的蓝牙系列芯片,有映射硬件模块去其他引脚的功能,可以配置各芯片的功能引脚重映射寄存器(R16_PIN_ALTERNATE),或者使用函数GPIOPinRemap函数进行配置. 比如说想要配置 ...

  9. Linux网络第五章:yum仓库的灵活部署及NFS共享服务

    目录 一.yum仓库的灵活部署 1.yum基础知识及命令 2.本地yum仓库搭建 3.通过httpd服务建立yum仓库 4.建立国内yum源 二.NFS共享服务 1.NFS基础知识 2.搭建NFS服务 ...

  10. react lodash节流this找不到正确用法

    if (!this.throttleLoadDicom) { this.throttleLoadDicom = throttle(this.loadDicomFun, 800, { leading: ...