Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then
$u$ is locally bounded and locally Lipschitz continuous. If $\partial_{x_i}f(x_0)$ exists at $x_0$, then $u$ is differentiable at $x_0$. By standard analysis, there exists a hyperplande $L_{x_0}(x)$ at any $x_0\in\Omega$. Now we any get a clearly picture to see that $u$ is differentiable at $x_0\in\Omega$.

Suppose $u$ is convex function in $\Omega$ and $u\in C(\overline{\Omega})$, show that
\begin{align}
u^\epsilon(x)=\max_{y\in\bar{\Omega}}(u(y)-\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.

Since we can not find a direct relevant reference for the proof, we give one here.

Assume that

\begin{align}
u^\epsilon(x_0)=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let $L(y)=u(y_0)+p(y-y_0)$ be the support plane at $y_0$, then we have
\begin{align}
u^\epsilon(x)&\geq u(y)-\frac{1}{\epsilon}|x-y|^2\\
&\geq u(y_0)+p_{y_0}(y-y_0)-\frac{1}{\epsilon}|x-y|^2\\
&= L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2
\end{align}

Therefore,
\begin{align}
u^\epsilon(x_0)&=L_{y_0}(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
u^\epsilon(x)&\geq L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2.
\end{align}
The last inequality implies that
\begin{align}
u^\epsilon(x)\geq L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}

Let
\begin{align}
l_{x_0}(x)&=L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
&=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2+p_0(x-x_0),
\end{align}
then
\begin{align}
u^\epsilon(x_0)=l_{x_0}(x_0),\\
u^\epsilon(x)\geq l_{x_0}(x).
\end{align}

Hence, $u^\epsilon(x)$ is convex in $\Omega_\epsilon$.

Similarly, we can prove that $u_\epsilon$ is also convex. But the proof is different, I don't know why?

Suppose $u$ is convex function, show that
\begin{align}
u^\epsilon(x)=\min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.

For any $x_1,x_2\in\Omega^\epsilon$, we have
\begin{align}
u^\epsilon(x_1)=u(y_1)+\frac{1}{\epsilon}|x_1-y_1|^2,\\
u^\epsilon(x_2)=u(y_2)+\frac{1}{\epsilon}|x_2-y_2|^2,
\end{align}
where $y_1,y_2\in\Omega$.

By convexity, for any $\lambda\in(0,1)$, we have
\begin{align*}
\lambda u^\epsilon(x_1)+(1-\lambda)u^\epsilon(x_2)&=\lambda u(y_1)+(1-\lambda)u(y_2)\\
&~~~~+\lambda\frac{1}{\epsilon}|x_1-y_1|^2
+(1-\lambda)\frac{1}{\epsilon}|x_2-y_2|^2\\
&\geq u(\lambda y_1+(1-\lambda)y_2)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-(\lambda y_1+(1-\lambda)y_2)|^2\\
&\geq \min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-y|^2)\\
=&u^\epsilon(\lambda x_1+(1-\lambda)x_2).
\end{align*}
Hence, $u^\epsilon(x)$ is convex.

Sup, inf convolution for convex functions的更多相关文章

  1. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  2. 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization

    以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...

  3. Spatial convolution

    小结: 1.卷积广泛存在与物理设备.计算机程序的smoothing平滑.sharpening锐化过程: 空间卷积可应用在图像处理中:函数f(原图像)经过滤器函数g形成新函数f-g(平滑化或锐利化的新图 ...

  4. Convex optimization 凸优化

    zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...

  5. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  6. 【论文翻译】NIN层论文中英对照翻译--(Network In Network)

    [论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...

  7. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  8. [BOOK] Applied Math and Machine Learning Basics

    <Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...

  9. 【翻译】给初学者的 Neural Networks / 神经网络 介绍

    本文翻译自 SATYA MALLICK 的  "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...

  10. Keras 自适应Learning Rate (LearningRateScheduler)

    When training deep neural networks, it is often useful to reduce learning rate as the training progr ...

随机推荐

  1. odoo Web Controllers 学习总结

    环境 odoo-14.0.post20221212.tar Web Controllers Controllers 控制器需要提供可扩展性,就像Model,但不能使用相同的机制,因为先决条件(已加载模 ...

  2. ABAP SORT 递减/递增

    排序 DESCENDING(递减) / ASCENDING(递增)只作用前字段 SORT  LT_VBAK BY VBELN  DESCENDING(递减). SORT  LT_VBAK BY VBE ...

  3. Dynamics365 DOC

    Sample: Early-bound table operationshttps://docs.microsoft.com/en-us/powerapps/developer/data-platfo ...

  4. Mysql数据库基础第六章:变量、存储过程与函数

    Mysql数据库基础系列 软件下载地址 提取码:7v7u 数据下载地址 提取码:e6p9 mysql数据库基础第一章:(一)数据库基本概念 mysql数据库基础第一章:(二)mysql环境搭建 mys ...

  5. celery+redis的使用(异步任务、定时任务)

    目录 celery理解 安装celery+redis 异步任务使用 1.基础使用 新建task.py文件 在项目文件目录下执行python交互式编程 在项目文件目录下创建worker消费任务 2.使用 ...

  6. windows运行xcopy计划任务 结果是0x4解决方案

    近几天发现一直好好的数据备份计划任务一直返回0x4失败,直接执行bat又是正常的. bat命令中使用的是xcopy,到处找方案没解决. 今天意外在使用另一个命令时,发现提示:网络连接数据超过最大值. ...

  7. Lucky Chains(最大公约数的应用)

    题目:Lucky Chains 题意: 给定两个正整数a, b,若(a, b) = (a + 1, b + 1) = (a + 2, b + 2) = ... = (a + k, b + k) = 1 ...

  8. Nginx 虚拟主机中配置 server_name ⼀个server块中配置多个站点 ⼀个站点配置多个⼆级域名

    ⼀个server块中配置多个站点 server { listen 80; server_name ~^(www.)?(.+)$; index index.php index.html; root /h ...

  9. function 和mapped function的区别

    1 --在函数定义上使用mapped前缀将此函数标记为自动映射到集合上.这意味着,如果将集合作为函数的第一个参数,则该函数将在集合的元素上自动重复调用.这允许您定义脚本化函数,这些函数的行为方式与映射 ...

  10. Web学习篇—Http协议

    Http协议简介 h3 { background: rgba(0, 154, 205, 1); color: rgba(255, 255, 255, 1); border-radius: 6px; f ...