Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then
$u$ is locally bounded and locally Lipschitz continuous. If $\partial_{x_i}f(x_0)$ exists at $x_0$, then $u$ is differentiable at $x_0$. By standard analysis, there exists a hyperplande $L_{x_0}(x)$ at any $x_0\in\Omega$. Now we any get a clearly picture to see that $u$ is differentiable at $x_0\in\Omega$.

Suppose $u$ is convex function in $\Omega$ and $u\in C(\overline{\Omega})$, show that
\begin{align}
u^\epsilon(x)=\max_{y\in\bar{\Omega}}(u(y)-\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.

Since we can not find a direct relevant reference for the proof, we give one here.

Assume that

\begin{align}
u^\epsilon(x_0)=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let $L(y)=u(y_0)+p(y-y_0)$ be the support plane at $y_0$, then we have
\begin{align}
u^\epsilon(x)&\geq u(y)-\frac{1}{\epsilon}|x-y|^2\\
&\geq u(y_0)+p_{y_0}(y-y_0)-\frac{1}{\epsilon}|x-y|^2\\
&= L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2
\end{align}

Therefore,
\begin{align}
u^\epsilon(x_0)&=L_{y_0}(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
u^\epsilon(x)&\geq L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2.
\end{align}
The last inequality implies that
\begin{align}
u^\epsilon(x)\geq L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}

Let
\begin{align}
l_{x_0}(x)&=L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
&=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2+p_0(x-x_0),
\end{align}
then
\begin{align}
u^\epsilon(x_0)=l_{x_0}(x_0),\\
u^\epsilon(x)\geq l_{x_0}(x).
\end{align}

Hence, $u^\epsilon(x)$ is convex in $\Omega_\epsilon$.

Similarly, we can prove that $u_\epsilon$ is also convex. But the proof is different, I don't know why?

Suppose $u$ is convex function, show that
\begin{align}
u^\epsilon(x)=\min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.

For any $x_1,x_2\in\Omega^\epsilon$, we have
\begin{align}
u^\epsilon(x_1)=u(y_1)+\frac{1}{\epsilon}|x_1-y_1|^2,\\
u^\epsilon(x_2)=u(y_2)+\frac{1}{\epsilon}|x_2-y_2|^2,
\end{align}
where $y_1,y_2\in\Omega$.

By convexity, for any $\lambda\in(0,1)$, we have
\begin{align*}
\lambda u^\epsilon(x_1)+(1-\lambda)u^\epsilon(x_2)&=\lambda u(y_1)+(1-\lambda)u(y_2)\\
&~~~~+\lambda\frac{1}{\epsilon}|x_1-y_1|^2
+(1-\lambda)\frac{1}{\epsilon}|x_2-y_2|^2\\
&\geq u(\lambda y_1+(1-\lambda)y_2)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-(\lambda y_1+(1-\lambda)y_2)|^2\\
&\geq \min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-y|^2)\\
=&u^\epsilon(\lambda x_1+(1-\lambda)x_2).
\end{align*}
Hence, $u^\epsilon(x)$ is convex.

Sup, inf convolution for convex functions的更多相关文章

  1. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  2. 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization

    以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...

  3. Spatial convolution

    小结: 1.卷积广泛存在与物理设备.计算机程序的smoothing平滑.sharpening锐化过程: 空间卷积可应用在图像处理中:函数f(原图像)经过滤器函数g形成新函数f-g(平滑化或锐利化的新图 ...

  4. Convex optimization 凸优化

    zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...

  5. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  6. 【论文翻译】NIN层论文中英对照翻译--(Network In Network)

    [论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...

  7. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  8. [BOOK] Applied Math and Machine Learning Basics

    <Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...

  9. 【翻译】给初学者的 Neural Networks / 神经网络 介绍

    本文翻译自 SATYA MALLICK 的  "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...

  10. Keras 自适应Learning Rate (LearningRateScheduler)

    When training deep neural networks, it is often useful to reduce learning rate as the training progr ...

随机推荐

  1. php 中解析xml文件

        public function xmltoarr($path) {//xml字符串转数组         $xml= $path;//XML文件         $objectxml = si ...

  2. for循环当中的 var let区别

    首先要了解这里代码执行顺序: for循环同步:setTimeout异步: js在执行代码的过程中,碰到同步代码会依次执行,碰到异步代码就会将其放入任务队列中进行等待,当同步代码执行完毕后再开始执行异步 ...

  3. 第七周作业-N67044-张铭扬

    1. 说明自动化运维的路径,原理,实践方法. 所谓自动化运维是指通过将日常IT运维中大量的重复性工作(小到简单的日常检查.配置变更和软件安装,大到整个变更流程的组织调度)由过去的手工执行转为标准化.流 ...

  4. IntelliJ IDEA运行项目的时候提示 Command line is too long 错误

    这时候你需要调整运行项目的配置,将 Configuration 中的 Shorten Command Line 修改为 JAR 就可以了.

  5. Asp.NET core/net 5接口返回实体含有long/int64的属性序列后最后几位变为0的解决

    Asp.NET core /net 5接口返回实体含有long/int64的属性时,序列后最后几位变为0的. 不得不吐槽一下MS,这种事还有问题,NND. 解决方案在startup.cs中添加:opt ...

  6. linux系统过滤文件,并且通过时间对过滤的文件排序

    命令如下所示: find /home/deep/tf/20220601/study -name '*.h5' |xargs ls -lta

  7. ALBERT论文简读

    问题描述 预训练自然语言表征时,增加模型的参数量通常可以是模型在下有任务中性能提升.但是这种做法对硬件设备的要求较高(当下的各种SOTA模型动辄数亿甚至数十亿个参数,倘若要扩大模型规模,这个内存问题是 ...

  8. VS2010 发布网站总是连同cs文件一起发布了

    选择第一个,保存再发布.cs文件 都删除了.

  9. CTreeCtrl的用法汇总(转)

    一 基础操作  1 插入节点 1)插入根节点 //插入根节点 HTREEITEM hRoot; CString str=L"ROOT" hRoot=nTreeCtrl.Insert ...

  10. CTF学习笔记(三)php部分

    三.常见PHP用法与漏洞 (〇)php的备份文件与phps php的备份文件一般是*.php.bak,在根目录下输入/index.php.bak, 下载 备份文件. phps文件就是php的源代码文件 ...