Sup, inf convolution for convex functions
Let $\Omega$ be a bounded convex domain in $\mathbb{R}^n$. $f:\Omega\rightarrow\mathbb{R}^n$. If $f$ is a convex function in $\Omega$, then
$u$ is locally bounded and locally Lipschitz continuous. If $\partial_{x_i}f(x_0)$ exists at $x_0$, then $u$ is differentiable at $x_0$. By standard analysis, there exists a hyperplande $L_{x_0}(x)$ at any $x_0\in\Omega$. Now we any get a clearly picture to see that $u$ is differentiable at $x_0\in\Omega$.
Suppose $u$ is convex function in $\Omega$ and $u\in C(\overline{\Omega})$, show that
\begin{align}
u^\epsilon(x)=\max_{y\in\bar{\Omega}}(u(y)-\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.
Since we can not find a direct relevant reference for the proof, we give one here.
Assume that
\begin{align}
u^\epsilon(x_0)=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let $L(y)=u(y_0)+p(y-y_0)$ be the support plane at $y_0$, then we have
\begin{align}
u^\epsilon(x)&\geq u(y)-\frac{1}{\epsilon}|x-y|^2\\
&\geq u(y_0)+p_{y_0}(y-y_0)-\frac{1}{\epsilon}|x-y|^2\\
&= L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2
\end{align}
Therefore,
\begin{align}
u^\epsilon(x_0)&=L_{y_0}(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
u^\epsilon(x)&\geq L_{y_0}(y)-\frac{1}{\epsilon}|x-y|^2.
\end{align}
The last inequality implies that
\begin{align}
u^\epsilon(x)\geq L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2.
\end{align}
Let
\begin{align}
l_{x_0}(x)&=L_{y_0}(x-x_0+y_0)-\frac{1}{\epsilon}|x_0-y_0|^2\\
&=u(y_0)-\frac{1}{\epsilon}|x_0-y_0|^2+p_0(x-x_0),
\end{align}
then
\begin{align}
u^\epsilon(x_0)=l_{x_0}(x_0),\\
u^\epsilon(x)\geq l_{x_0}(x).
\end{align}
Hence, $u^\epsilon(x)$ is convex in $\Omega_\epsilon$.
Similarly, we can prove that $u_\epsilon$ is also convex. But the proof is different, I don't know why?
Suppose $u$ is convex function, show that
\begin{align}
u^\epsilon(x)=\min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|x-y|^2)
\end{align}
is also convex in $\Omega^\epsilon$.
For any $x_1,x_2\in\Omega^\epsilon$, we have
\begin{align}
u^\epsilon(x_1)=u(y_1)+\frac{1}{\epsilon}|x_1-y_1|^2,\\
u^\epsilon(x_2)=u(y_2)+\frac{1}{\epsilon}|x_2-y_2|^2,
\end{align}
where $y_1,y_2\in\Omega$.
By convexity, for any $\lambda\in(0,1)$, we have
\begin{align*}
\lambda u^\epsilon(x_1)+(1-\lambda)u^\epsilon(x_2)&=\lambda u(y_1)+(1-\lambda)u(y_2)\\
&~~~~+\lambda\frac{1}{\epsilon}|x_1-y_1|^2
+(1-\lambda)\frac{1}{\epsilon}|x_2-y_2|^2\\
&\geq u(\lambda y_1+(1-\lambda)y_2)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-(\lambda y_1+(1-\lambda)y_2)|^2\\
&\geq \min_{y\in\bar{\Omega}}(u(y)+\frac{1}{\epsilon}|\lambda x_1+(1-\lambda)x_2-y|^2)\\
=&u^\epsilon(\lambda x_1+(1-\lambda)x_2).
\end{align*}
Hence, $u^\epsilon(x)$ is convex.
Sup, inf convolution for convex functions的更多相关文章
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- 【Convex Optimization (by Boyd) 学习笔记】Chapter 1 - Mathematical Optimization
以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optim ...
- Spatial convolution
小结: 1.卷积广泛存在与物理设备.计算机程序的smoothing平滑.sharpening锐化过程: 空间卷积可应用在图像处理中:函数f(原图像)经过滤器函数g形成新函数f-g(平滑化或锐利化的新图 ...
- Convex optimization 凸优化
zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 【论文翻译】NIN层论文中英对照翻译--(Network In Network)
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...
- CCJ PRML Study Note - Chapter 1.6 : Information Theory
Chapter 1.6 : Information Theory Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...
- [BOOK] Applied Math and Machine Learning Basics
<Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...
- 【翻译】给初学者的 Neural Networks / 神经网络 介绍
本文翻译自 SATYA MALLICK 的 "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...
- Keras 自适应Learning Rate (LearningRateScheduler)
When training deep neural networks, it is often useful to reduce learning rate as the training progr ...
随机推荐
- 98、TypeError: f.upload.addEventListener is not a function
https://blog.csdn.net/qq_42202633/article/details/123083927 在分片上传时遇到的这个问题
- [NepCTF2022]signin
signin 题目 from Crypto.Util.number import getStrongPrime,bytes_to_long from gmpy2 import powmod,is_pr ...
- element-ui下表格头部字段hover显示tips信息
记录一下表格头部加hover之后显示tips信息循环,或单独的el-table-column都可以哦 <el-table-column prop="name&q ...
- D8-16K加密锁配置流程
1.vscode安装yttool插件,可在拓展商店中搜索ext:yt即可找到. 补充地址:https://marketplace.visualstudio.com/items?itemName=ytk ...
- Minio服务器搭建
记录Minio服务器搭建过程 参考 1.下载minio 从地址https://min.io/download#/windows 下载minio server和minio client. 2.将两个ex ...
- 获取select的选中的值
var select = document.getElementById("sec")//获取元素 var idx = select.selectedIndex;//获取当前选中的 ...
- java对象序列化byte[] 和 byte[]反序列化对象
import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOExceptio ...
- 硬件IIC的重映射使用问题
目录 沁恒的蓝牙系列芯片,有映射硬件模块去其他引脚的功能,可以配置各芯片的功能引脚重映射寄存器(R16_PIN_ALTERNATE),或者使用函数GPIOPinRemap函数进行配置. 比如说想要配置 ...
- Linux网络第五章:yum仓库的灵活部署及NFS共享服务
目录 一.yum仓库的灵活部署 1.yum基础知识及命令 2.本地yum仓库搭建 3.通过httpd服务建立yum仓库 4.建立国内yum源 二.NFS共享服务 1.NFS基础知识 2.搭建NFS服务 ...
- react lodash节流this找不到正确用法
if (!this.throttleLoadDicom) { this.throttleLoadDicom = throttle(this.loadDicomFun, 800, { leading: ...