面试题 10. 斐波那契数列

题目一:求斐波那契数列的第n项

题目描述:求斐波拉契数列的第n项
写出一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项。斐波拉契数列定义如下:


C++ 实现

/* 斐波拉契数列 */
#include <iostream>
using namespace std;
/* 递归实现 */
long long Fibonacci1( unsigned int n )
{
if ( n <= 1 )
{
return(n);
}
return(Fibonacci1( n - 1 ) + Fibonacci1( n - 2 ) );
} /* 非递归实现 */
long long Fibonacci2( unsigned int n )
{
if ( n <= 1 )
{
return(n);
}
int f1 = 0, f2 = 1, sum;
for ( int i = 2; i <= n; i++ )
{
sum = f1 + f2;
f1 = f2;
f2 = sum;
}
return(sum);
} int main()
{
/* 测试数据 */
for ( int i = 0; i <= 20; i++ )
{
cout << Fibonacci1( i ) << " ";
}
cout << endl;
for ( int i = 0; i <= 20; i++ )
{
cout << Fibonacci2( i ) << " ";
}
cout << endl;
return(0);
}

运行结果

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
请按任意键继续. . .

题目二:青蛙跳台阶问题

题目描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
(F(n)=F(n-1)+F(n-2))

C++ 实现

#include <iostream>
using namespace std;
/* 递归实现 */
long long JumpStairs( unsigned int n )
{
if ( n <= 1 )
{
return(n);
}
return(JumpStairs( n - 1 ) + JumpStairs( n - 2 ) );
} int main()
{
for ( int i = 1; i <= 20; i++ )
{
cout << JumpStairs( i ) << " ";
}
cout << endl;
return(0);
}

运行结果

题目三:变态跳台阶

题目描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。
求该青蛙跳上一个n级的台阶总共有多少种跳法。(F(n)=2*F(n-1))

C++ 实现

#include <iostream>
using namespace std;
/* 递归实现 */
long long JumpStairs( unsigned int n )
{
if ( n <= 1 )
{
return(1);
}
return(2 * JumpStairs( n - 1 ) );
} int main()
{
for ( int i = 1; i <= 10; i++ )
{
cout << JumpStairs( i ) << " ";
}
cout << endl;
return(0);
}

运行结果

题目四:矩形覆盖

题目描述:我们可以用2×1的小矩形横着或者竖着去覆盖更大的矩形。
请问用n个2×1的小矩形无重叠地覆盖一个2×n的大矩形,总共有多少种方法?

Java 实现

public class Solution {
public int RectCover(int target) {
if (target <= 2)
return target;
return RectCover(target - 1) + RectCover(target - 2);
}
}

运行结果

0 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946

【剑指offer】面试题 10. 斐波那契数列的更多相关文章

  1. 剑指offer第二版-10.斐波那契数列

    面试题10:斐波那契数列 题目要求: 求斐波那契数列的第n项的值.f(0)=0, f(1)=1, f(n)=f(n-1)+f(n-2) n>1 思路:使用循环从下往上计算数列. 考点:考察对递归 ...

  2. 剑指Offer - 九度1387 - 斐波那契数列

    剑指Offer - 九度1387 - 斐波那契数列2013-11-24 03:08 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.斐波那契数列的定义如下: ...

  3. 【剑指offer】9、斐波拉契数列

    面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long ...

  4. 【剑指Offer】7、斐波那契数列

      题目描述:   大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).假设n<=39.   解题思路:   斐波那契数列:0,1,1,2,3, ...

  5. 剑指offer【07】- 斐波那契数列(java)

    题目:斐波那契数列 考点:递归和循环 题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0),n<=39. 法一:递归法,不过递归比较慢, ...

  6. 剑指offer(7)斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 题目分析 我们都知道斐波那契可以用递归,但是递归重复计算的部分太多了(虽然可以通过),但是这 ...

  7. 【剑指offer】7:斐波那契数列

    题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1).假设 n≤39 解题思路: 斐波拉契数列:1,1,2,3,5,8--,总结 ...

  8. 剑指offer——矩阵覆盖(斐波那契变形)

    ****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? cl ...

  9. 剑指offer——面试题10:斐波那契数列

    个人答案: #include"iostream" #include"stdio.h" #include"string.h" using na ...

随机推荐

  1. [linux]ubuntu限速软件

    wondersharper 1 安装wondershaper:sudo apt-get install wondershaper2 限制下载,上传速度(1500是限制下载速度(实际限速150k左右), ...

  2. JQuery学习六

    <JQuery cookie>插件 cookie是保存在浏览器上的内容,用户在这次浏览页面的时候向cookie中保存文本内容.下次再访问页面的时侯就可以取出来上次保存的内容.这样可以得到上 ...

  3. C#学习目录处理

    目录获取和处理: string path = ".";//表明要在当前所在的目录 //先定义目录信息变量 DirectoryInfo dir = new DirectoryInfo ...

  4. Difference between Netbios and Host name

    Hostnames or NetBIOS names were used to provide a friendlier means of identifying servers or worksta ...

  5. bzoj3716/4251 [PA2014]Muzeum

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3716 http://www.lydsy.com/JudgeOnline/problem.ph ...

  6. bzoj 1700: [Usaco2007 Jan]Problem Solving 解题 ——dp

    Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地说,他们有P (1 <= P <= 300) 道题目要做. 他们还离开了农场 ...

  7. 将文件内容导入到MySQL中

    1.作用 把文件系统的内容导入到数据库中 2.语法 load data infile "文件名" into table 表名 fields terminated by " ...

  8. HDU 2899 三分

    我们对这个函数求二阶导数,发现他的二阶导数是恒大于0的,那么他的导数是单调的,且在某时刻为0,那么这时的x值就是极值处的x值,其实题目说了,有最小值,那么我们三分水过去就好了. 反思:精度不够,因为是 ...

  9. grunt、Browsersync服务及weinre远程调试

    一.grunt server服务 前端开发时,经常需要把静态文件映射成web服务,传统的做法是丢到apache,但太重太不友好了.开发angular的时候,官方的chrome插件对file:///的支 ...

  10. OC 01 类和对象

    一.  定义OC的类和创建OC的对象 接下来就在OC中模拟现实生活中的情况,创建一辆车出来.首先要有一个车子类,然后再利用车子类创建车子对象 要描述OC中的类稍微麻烦一点,分2大步骤:类的声明.类的实 ...