Description

Thousands of thousands years ago there was a small kingdom located in the middle of the Pacific Ocean. The territory of the kingdom consists two separated islands. Due to the impact of the ocean current, the shapes of both the islands became convex polygons. The king of the kingdom wanted to establish a bridge to connect the two islands. To minimize the cost, the king asked you, the bishop, to find the minimal distance between the boundaries of the two islands.

Input

The input consists of several test cases.
Each test case begins with two integers NM. (3 ≤ NM ≤ 10000)
Each of the next N lines contains a pair of coordinates, which describes the position of a vertex in one convex polygon.
Each of the next M lines contains a pair of coordinates, which describes the position of a vertex in the other convex polygon.
A line with N = M = 0 indicates the end of input.
The coordinates are within the range [-10000, 10000].

Output

For each test case output the minimal distance. An error within 0.001 is acceptable.

题目大意:给两个凸多边形,求两个凸多边形的最近距离

思路:用旋转卡壳,最短距离一定在两条支撑线之间(相当于切线吧大概……),详见代码,表达能力渣渣

PS:此题虽然没说点的顺序,DISCUSS里面有人说是乱序的,但实际上好像是逆序的(反正我不考虑点的顺序也能过就是了……)

代码(125MS):

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define EPS 1e-8
#define MAXN 10010 inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} struct Point {
double x, y;
Point(double xx = , double yy = ): x(xx), y(yy) {}
};
//cross
inline double operator ^ (const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} inline double operator * (const Point &a, const Point &b) {
return a.x * b.x + a.y * b.y;
} inline Point operator - (const Point &a, const Point &b) {
return Point(a.x - b.x, a.y - b.y);
} inline double dist(const Point &a, const Point &b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} inline double Cross(Point o, Point s, Point e) {
return (s - o) ^ (e - o);
} struct Line {
Point s, e;
Line() {}
Line(Point ss, Point ee): s(ss), e(ee) {}
}; inline double Point_to_Line(const Point &p, const Line &L) {
return fabs(Cross(p, L.s, L.e)/dist(L.s, L.e));
} inline double Point_to_Seg(const Point &p, const Line &L) {
if(sgn((L.e - L.s) * (p - L.s)) < ) return dist(p, L.s);
if(sgn((L.s - L.e) * (p - L.e)) < ) return dist(p, L.e);
return Point_to_Line(p, L);
} inline double Seg_to_Seg(const Line &a, const Line &b) {
double ans1 = min(Point_to_Seg(a.s, b), Point_to_Seg(a.e, b));
double ans2 = min(Point_to_Seg(b.s, a), Point_to_Seg(b.e, a));
return min(ans1, ans2);
} inline double solve(Point *p, Point *q, int np, int nq) {
p[np] = p[];
q[nq] = q[];
int sp = , sq = ;
for(int i = ; i < np; ++i) if(sgn(p[i].y - p[sp].y) < ) sp = i;
for(int i = ; i < nq; ++i) if(sgn(q[i].y - q[sq].y) < ) sq = i;
double tmp, ans = dist(p[], q[]);
for(int i = ; i < np; ++i) {
while(sgn(tmp = (Cross(q[sq], p[sp], p[sp+]) - Cross(q[sq+],p[sp],p[sp+]))) < )
sq = (sq + ) % nq;
if(sgn(tmp) > )
ans = min(ans, Point_to_Seg(q[sq], Line(p[sp], p[sp+])));
else
ans = min(ans, Seg_to_Seg(Line(p[sp], p[sp+]), Line(q[sq], q[sq+])));
sp = (sp + ) % np;
}
return ans;
} Point p[MAXN], q[MAXN];
int np, nq; int main() {
while(scanf("%d%d", &np, &nq) != EOF) {
if(np == && nq == ) break;
for(int i = ; i < np; ++i)
scanf("%lf%lf", &p[i].x, &p[i].y);
for(int i = ; i < nq; ++i)
scanf("%lf%lf", &q[i].x, &q[i].y);
printf("%f\n", min(solve(p, q, np, nq), solve(q, p, nq, np)));
}
return ;
}

代码(141MS)(高度模板化):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846
const double INF = ; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const double &b) const {
return Point(x * b, y * b);
}
Point operator / (const double &b) const {
return Point(x / b, y / b);
}
double operator * (const Point &rhs) const {
return x * rhs.x + y * rhs.y;
}
double length() {
return sqrt(x * x + y * y);
}
Point unit() {
return *this / length();
}
void makeAg() {
ag = atan2(y, x);
}
void print() {
printf("%.10f %.10f\n", x, y);
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn right
double cross(const Point &sp, const Point &ed, const Point &op) {
return cross(sp - op, ed - op);
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; //ax + by + c > 0
Line buildLine(double a, double b, double c) {
if(sgn(a) == && sgn(b) == ) return Line(Point(sgn(c) > ? - : , INF), Point(, INF));
if(sgn(a) == ) return Line(Point(sgn(b), -c/b), Point(, -c/b));
if(sgn(b) == ) return Line(Point(-c/a, ), Point(-c/a, sgn(a)));
if(b < ) return Line(Point(, -c/b), Point(, -(a + c) / b));
else return Line(Point(, -(a + c) / b), Point(, -c/b));
} void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} double Point_to_Line(const Point &p, const Line &L) {
return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
} double Point_to_Seg(const Point &p, const Seg &L) {
if(sgn((L.ed - L.st) * (p - L.st)) < ) return dist(p, L.st);
if(sgn((L.st - L.ed) * (p - L.ed)) < ) return dist(p, L.ed);
return Point_to_Line(p, L);
} double Seg_to_Seg(const Seg &a, const Seg &b) {
double ans1 = min(Point_to_Seg(a.st, b), Point_to_Seg(a.ed, b));
double ans2 = min(Point_to_Seg(b.st, a), Point_to_Seg(b.ed, a));
return min(ans1, ans2);
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
};
//the convex hull is clockwise
void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} //ix and jx is the points whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise
double dia_rotating_calipers(Poly &res, int &ix, int &jx) {
double dia = ;
int q = ;
for(int i = ; i < res.n - ; ++i) {
while(sgn(cross(res.p[i], res.p[q + ], res.p[i + ]) - cross(res.p[i], res.p[q], res.p[i + ])) > )
q = (q + ) % (res.n - );
if(sgn(dist(res.p[i], res.p[q]) - dia) > ) {
dia = dist(res.p[i], res.p[q]);
ix = i; jx = q;
}
if(sgn(dist(res.p[i + ], res.p[q]) - dia) > ) {
dia = dist(res.p[i + ], res.p[q]);
ix = i + ; jx = q;
}
}
return dia;
}
//a and b must be clockwise, find the minimum distance between two convex hull
double half_rotating_calipers(Poly &a, Poly &b) {
int sa = , sb = ;
for(int i = ; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < ) sa = i;
for(int i = ; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < ) sb = i;
double tmp, ans = dist(a.p[], b.p[]);
for(int i = ; i < a.n; ++i) {
while(sgn(tmp = cross(a.p[sa], a.p[sa + ], b.p[sb + ]) - cross(a.p[sa], a.p[sa + ], b.p[sb])) > )
sb = (sb + ) % (b.n - );
if(sgn(tmp) < ) ans = min(ans, Point_to_Seg(b.p[sb], Seg(a.p[sa], a.p[sa + ])));
else ans = min(ans, Seg_to_Seg(Seg(a.p[sa], a.p[sa + ]), Seg(b.p[sb], b.p[sb + ])));
sa = (sa + ) % (a.n - );
}
return ans;
} double rotating_calipers(Poly &a, Poly &b) {
return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a));
} /*******************************************************************************************/ Poly a, b; double solve() {
double ans = 1e100;
for(int i = ; i < a.n; ++i)
for(int j = ; j < b.n; ++j) ans = min(ans, dist(a.p[i], b.p[j]));
return ans;
} int main() {
while(scanf("%d%d", &a.n, &b.n) != EOF) {
if(a.n == && b.n == ) break;
for(int i = ; i < a.n; ++i) a.p[i].read();
a.p[a.n++] = a.p[];
for(int i = ; i < b.n; ++i) b.p[i].read();
b.p[b.n++] = b.p[];
printf("%f\n", rotating_calipers(a, b));
//printf("%f\n", solve());
}
return ;
}

POJ 3608 Bridge Across Islands(计算几何の旋转卡壳)的更多相关文章

  1. POJ 3608 Bridge Across Islands(旋转卡壳,两凸包最短距离)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7202   Accepted:  ...

  2. POJ 3608 Bridge Across Islands (旋转卡壳)

    [题目链接] http://poj.org/problem?id=3608 [题目大意] 求出两个凸包之间的最短距离 [题解] 我们先找到一个凸包的上顶点和一个凸包的下定点,以这两个点为起点向下一个点 ...

  3. POJ - 3608 Bridge Across Islands【旋转卡壳】及一些有趣现象

    给两个凸包,求这两个凸包间最短距离 旋转卡壳的基础题 因为是初学旋转卡壳,所以找了别人的代码进行观摩..然而发现很有意思的现象 比如说这个代码(只截取了关键部分) double solve(Point ...

  4. POJ 3608 Bridge Across Islands --凸包间距离,旋转卡壳

    题意: 给你两个凸包,求其最短距离. 解法: POJ 我真的是弄不懂了,也不说一声点就是按顺时针给出的,不用调整点顺序. 还是说数据水了,没出乱给点或给逆时针点的数据呢..我直接默认顺时针给的点居然A ...

  5. POJ 3608 Bridge Across Islands [旋转卡壳]

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10455   Accepted: ...

  6. ●POJ 3608 Bridge Across Islands

    题链: http://poj.org/problem?id=3608 题解: 计算几何,求两个凸包间的最小距离,旋转卡壳 两个凸包间的距离,无非下面三种情况: 所以可以基于旋转卡壳的思想,去求最小距离 ...

  7. POJ 3608 凸包间最短距离(旋转卡壳)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11539   Accepted: ...

  8. 「POJ-3608」Bridge Across Islands (旋转卡壳--求两凸包距离)

    题目链接 POJ-3608 Bridge Across Islands 题意 依次按逆时针方向给出凸包,在两个凸包小岛之间造桥,求最小距离. 题解 旋转卡壳的应用之一:求两凸包的最近距离. 找到凸包 ...

  9. poj 3608 Bridge Across Islands

    题目:计算两个不相交凸多边形间的最小距离. 分析:计算几何.凸包.旋转卡壳.分别求出凸包,利用旋转卡壳求出对踵点对,枚举距离即可. 注意:1.利用向量法判断旋转,而不是计算角度:避免精度问题和TLE. ...

随机推荐

  1. 编译升级至openssh7.6

    1.概述 目的:下载源码包(https://openbsd.hk/pub/OpenBSD/OpenSSH/portable/openssh-7.6p1.tar.gz),编译升级为openssh为7.6 ...

  2. 面试题——Java虚拟机

    一.运行时数据区域 Java虚拟机在执行Java程序的时候会把它所管理的内存划分为若干个不同的数据区域,这些区域各有用途: 程序计数器:(线程私有的) 程序计数器是一块较小的内存,可以看作是当前线程所 ...

  3. 中国软件大会上大快搜索入选中国数字化转型TOP100服务商

    大快搜索自荣获“2018中国大数据企业50强”殊荣,12月20日在由工信部指导,中国电子信息产业化发展研究院主办的2018中国软件大会上,大快搜索获评“2018中国大数据基础软件领域领军企业”称号,入 ...

  4. 通过devmem访问物理地址

    目录 1.写在前面 2.devmem使用 3.应用层 4.内核层 1.写在前面 最近在调试时需要在用户层访问物理内存,发现应用层可以使用devmem工具访问物理地址.查看源码,实际上是对/dev/me ...

  5. A64 I2S调试

    通过A64 的I2S总线与回音消除模块连接,在A64中需要使能并配置daudio功能. Daudio 为A64 的数字音频接口,可配置成i2s/pcm格式标准音频接口. 内核配置在lichee/lin ...

  6. python应用:爬虫框架Scrapy系统学习第四篇——scrapy爬取笔趣阁小说

    使用cmd创建一个scrapy项目: scrapy startproject project_name (project_name 必须以字母开头,只能包含字母.数字以及下划线<undersco ...

  7. java中reader和writer部分的笔记

    输入和输出流:获取流对象从文件中获取InputStream in = Files.newInputStream(path);OutputStream out = Files.newOutputStre ...

  8. java入门---对象和类&概念详解&实例

        Java作为一种面向对象语言.支持以下基本概念: 多态 继承 封装 抽象 类 对象 实例 方法 重载     这篇文章,我们主要来看下: 对象:对象是类的一个实例(对象不是找个女朋友),有状态 ...

  9. Caliburn.Micro 杰的入门教程4,事件聚合器

    Caliburn.Micro 杰的入门教程1(原创翻译)Caliburn.Micro 杰的入门教程2 ,了解Data Binding 和 Events(原创翻译)Caliburn.Micro 杰的入门 ...

  10. Prism for WPF 搭建一个简单的模块化开发框架(五)添加聊天、消息模块

    原文:Prism for WPF 搭建一个简单的模块化开发框架(五)添加聊天.消息模块 中秋节假期没事继续搞了搞 做了各聊天的模块,需要继续优化 第一步画页面 页面参考https://github.c ...