Description

Thousands of thousands years ago there was a small kingdom located in the middle of the Pacific Ocean. The territory of the kingdom consists two separated islands. Due to the impact of the ocean current, the shapes of both the islands became convex polygons. The king of the kingdom wanted to establish a bridge to connect the two islands. To minimize the cost, the king asked you, the bishop, to find the minimal distance between the boundaries of the two islands.

Input

The input consists of several test cases.
Each test case begins with two integers NM. (3 ≤ NM ≤ 10000)
Each of the next N lines contains a pair of coordinates, which describes the position of a vertex in one convex polygon.
Each of the next M lines contains a pair of coordinates, which describes the position of a vertex in the other convex polygon.
A line with N = M = 0 indicates the end of input.
The coordinates are within the range [-10000, 10000].

Output

For each test case output the minimal distance. An error within 0.001 is acceptable.

题目大意:给两个凸多边形,求两个凸多边形的最近距离

思路:用旋转卡壳,最短距离一定在两条支撑线之间(相当于切线吧大概……),详见代码,表达能力渣渣

PS:此题虽然没说点的顺序,DISCUSS里面有人说是乱序的,但实际上好像是逆序的(反正我不考虑点的顺序也能过就是了……)

代码(125MS):

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define EPS 1e-8
#define MAXN 10010 inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} struct Point {
double x, y;
Point(double xx = , double yy = ): x(xx), y(yy) {}
};
//cross
inline double operator ^ (const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} inline double operator * (const Point &a, const Point &b) {
return a.x * b.x + a.y * b.y;
} inline Point operator - (const Point &a, const Point &b) {
return Point(a.x - b.x, a.y - b.y);
} inline double dist(const Point &a, const Point &b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} inline double Cross(Point o, Point s, Point e) {
return (s - o) ^ (e - o);
} struct Line {
Point s, e;
Line() {}
Line(Point ss, Point ee): s(ss), e(ee) {}
}; inline double Point_to_Line(const Point &p, const Line &L) {
return fabs(Cross(p, L.s, L.e)/dist(L.s, L.e));
} inline double Point_to_Seg(const Point &p, const Line &L) {
if(sgn((L.e - L.s) * (p - L.s)) < ) return dist(p, L.s);
if(sgn((L.s - L.e) * (p - L.e)) < ) return dist(p, L.e);
return Point_to_Line(p, L);
} inline double Seg_to_Seg(const Line &a, const Line &b) {
double ans1 = min(Point_to_Seg(a.s, b), Point_to_Seg(a.e, b));
double ans2 = min(Point_to_Seg(b.s, a), Point_to_Seg(b.e, a));
return min(ans1, ans2);
} inline double solve(Point *p, Point *q, int np, int nq) {
p[np] = p[];
q[nq] = q[];
int sp = , sq = ;
for(int i = ; i < np; ++i) if(sgn(p[i].y - p[sp].y) < ) sp = i;
for(int i = ; i < nq; ++i) if(sgn(q[i].y - q[sq].y) < ) sq = i;
double tmp, ans = dist(p[], q[]);
for(int i = ; i < np; ++i) {
while(sgn(tmp = (Cross(q[sq], p[sp], p[sp+]) - Cross(q[sq+],p[sp],p[sp+]))) < )
sq = (sq + ) % nq;
if(sgn(tmp) > )
ans = min(ans, Point_to_Seg(q[sq], Line(p[sp], p[sp+])));
else
ans = min(ans, Seg_to_Seg(Line(p[sp], p[sp+]), Line(q[sq], q[sq+])));
sp = (sp + ) % np;
}
return ans;
} Point p[MAXN], q[MAXN];
int np, nq; int main() {
while(scanf("%d%d", &np, &nq) != EOF) {
if(np == && nq == ) break;
for(int i = ; i < np; ++i)
scanf("%lf%lf", &p[i].x, &p[i].y);
for(int i = ; i < nq; ++i)
scanf("%lf%lf", &q[i].x, &q[i].y);
printf("%f\n", min(solve(p, q, np, nq), solve(q, p, nq, np)));
}
return ;
}

代码(141MS)(高度模板化):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846
const double INF = ; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const double &b) const {
return Point(x * b, y * b);
}
Point operator / (const double &b) const {
return Point(x / b, y / b);
}
double operator * (const Point &rhs) const {
return x * rhs.x + y * rhs.y;
}
double length() {
return sqrt(x * x + y * y);
}
Point unit() {
return *this / length();
}
void makeAg() {
ag = atan2(y, x);
}
void print() {
printf("%.10f %.10f\n", x, y);
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn right
double cross(const Point &sp, const Point &ed, const Point &op) {
return cross(sp - op, ed - op);
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; //ax + by + c > 0
Line buildLine(double a, double b, double c) {
if(sgn(a) == && sgn(b) == ) return Line(Point(sgn(c) > ? - : , INF), Point(, INF));
if(sgn(a) == ) return Line(Point(sgn(b), -c/b), Point(, -c/b));
if(sgn(b) == ) return Line(Point(-c/a, ), Point(-c/a, sgn(a)));
if(b < ) return Line(Point(, -c/b), Point(, -(a + c) / b));
else return Line(Point(, -(a + c) / b), Point(, -c/b));
} void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} double Point_to_Line(const Point &p, const Line &L) {
return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
} double Point_to_Seg(const Point &p, const Seg &L) {
if(sgn((L.ed - L.st) * (p - L.st)) < ) return dist(p, L.st);
if(sgn((L.st - L.ed) * (p - L.ed)) < ) return dist(p, L.ed);
return Point_to_Line(p, L);
} double Seg_to_Seg(const Seg &a, const Seg &b) {
double ans1 = min(Point_to_Seg(a.st, b), Point_to_Seg(a.ed, b));
double ans2 = min(Point_to_Seg(b.st, a), Point_to_Seg(b.ed, a));
return min(ans1, ans2);
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
};
//the convex hull is clockwise
void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} //ix and jx is the points whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise
double dia_rotating_calipers(Poly &res, int &ix, int &jx) {
double dia = ;
int q = ;
for(int i = ; i < res.n - ; ++i) {
while(sgn(cross(res.p[i], res.p[q + ], res.p[i + ]) - cross(res.p[i], res.p[q], res.p[i + ])) > )
q = (q + ) % (res.n - );
if(sgn(dist(res.p[i], res.p[q]) - dia) > ) {
dia = dist(res.p[i], res.p[q]);
ix = i; jx = q;
}
if(sgn(dist(res.p[i + ], res.p[q]) - dia) > ) {
dia = dist(res.p[i + ], res.p[q]);
ix = i + ; jx = q;
}
}
return dia;
}
//a and b must be clockwise, find the minimum distance between two convex hull
double half_rotating_calipers(Poly &a, Poly &b) {
int sa = , sb = ;
for(int i = ; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < ) sa = i;
for(int i = ; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < ) sb = i;
double tmp, ans = dist(a.p[], b.p[]);
for(int i = ; i < a.n; ++i) {
while(sgn(tmp = cross(a.p[sa], a.p[sa + ], b.p[sb + ]) - cross(a.p[sa], a.p[sa + ], b.p[sb])) > )
sb = (sb + ) % (b.n - );
if(sgn(tmp) < ) ans = min(ans, Point_to_Seg(b.p[sb], Seg(a.p[sa], a.p[sa + ])));
else ans = min(ans, Seg_to_Seg(Seg(a.p[sa], a.p[sa + ]), Seg(b.p[sb], b.p[sb + ])));
sa = (sa + ) % (a.n - );
}
return ans;
} double rotating_calipers(Poly &a, Poly &b) {
return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a));
} /*******************************************************************************************/ Poly a, b; double solve() {
double ans = 1e100;
for(int i = ; i < a.n; ++i)
for(int j = ; j < b.n; ++j) ans = min(ans, dist(a.p[i], b.p[j]));
return ans;
} int main() {
while(scanf("%d%d", &a.n, &b.n) != EOF) {
if(a.n == && b.n == ) break;
for(int i = ; i < a.n; ++i) a.p[i].read();
a.p[a.n++] = a.p[];
for(int i = ; i < b.n; ++i) b.p[i].read();
b.p[b.n++] = b.p[];
printf("%f\n", rotating_calipers(a, b));
//printf("%f\n", solve());
}
return ;
}

POJ 3608 Bridge Across Islands(计算几何の旋转卡壳)的更多相关文章

  1. POJ 3608 Bridge Across Islands(旋转卡壳,两凸包最短距离)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7202   Accepted:  ...

  2. POJ 3608 Bridge Across Islands (旋转卡壳)

    [题目链接] http://poj.org/problem?id=3608 [题目大意] 求出两个凸包之间的最短距离 [题解] 我们先找到一个凸包的上顶点和一个凸包的下定点,以这两个点为起点向下一个点 ...

  3. POJ - 3608 Bridge Across Islands【旋转卡壳】及一些有趣现象

    给两个凸包,求这两个凸包间最短距离 旋转卡壳的基础题 因为是初学旋转卡壳,所以找了别人的代码进行观摩..然而发现很有意思的现象 比如说这个代码(只截取了关键部分) double solve(Point ...

  4. POJ 3608 Bridge Across Islands --凸包间距离,旋转卡壳

    题意: 给你两个凸包,求其最短距离. 解法: POJ 我真的是弄不懂了,也不说一声点就是按顺时针给出的,不用调整点顺序. 还是说数据水了,没出乱给点或给逆时针点的数据呢..我直接默认顺时针给的点居然A ...

  5. POJ 3608 Bridge Across Islands [旋转卡壳]

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10455   Accepted: ...

  6. ●POJ 3608 Bridge Across Islands

    题链: http://poj.org/problem?id=3608 题解: 计算几何,求两个凸包间的最小距离,旋转卡壳 两个凸包间的距离,无非下面三种情况: 所以可以基于旋转卡壳的思想,去求最小距离 ...

  7. POJ 3608 凸包间最短距离(旋转卡壳)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11539   Accepted: ...

  8. 「POJ-3608」Bridge Across Islands (旋转卡壳--求两凸包距离)

    题目链接 POJ-3608 Bridge Across Islands 题意 依次按逆时针方向给出凸包,在两个凸包小岛之间造桥,求最小距离. 题解 旋转卡壳的应用之一:求两凸包的最近距离. 找到凸包 ...

  9. poj 3608 Bridge Across Islands

    题目:计算两个不相交凸多边形间的最小距离. 分析:计算几何.凸包.旋转卡壳.分别求出凸包,利用旋转卡壳求出对踵点对,枚举距离即可. 注意:1.利用向量法判断旋转,而不是计算角度:避免精度问题和TLE. ...

随机推荐

  1. Flask入门数据库的查询集与过滤器(十一)

    1 查询集 : 指数据查询的集合 原始查询集: 不经过任何过滤返回的结果为原始查询集 数据查询集: 将原始查询集经过条件的筛选最终返回的结果 查询过滤器: 过滤器 功能 cls.query.filte ...

  2. 一个hibernate中的异常:NonUniqueDiscoveredSqlAliasException

    在hibernate中用SQL查询返回的结果集中,列名或别名必须唯一,否则会报下面的错误.返回的结果集中,列名或别名可以没有,但只能有一列没有. //空别名重复的情况:org.hibernate.lo ...

  3. Spring Cloud 微服务入门(二)--Spring Cloud 架构

    Spring Cloud整体核心架构:Rest服务,在Spring Cloud配置过程中,都是遵循Rest风格规范,在Rest处理中,必不可少两个对象端:服务的提供者(provider)和服务消费者( ...

  4. Apache常规配置说明

    Apache配置文件:conf/httpd.conf.(注意:表示路径时使用‘/’而不使用‘\’,注释使用‘#’) 1. ServerRoot:服务器根目录,也就是Apache的安装目录,其他的目录配 ...

  5. 小心使用replicate_do_db和replicate_ignore_db

    内容来源于网络 使用replicate_do_db和replicate_ignore_db时有一个隐患,跨库更新时会出错 如设置 replicate_do_db=testuse mysql;updat ...

  6. 关于mysql 删除数据后(.MYD,MYI)物理空间未释放

    关于mysql 删除数据后物理空间未释放 OPTIMIZE TABLE 当您的库中删除了大量的数据后,您可能会发现数据文件尺寸并没有减小.这是因为删除操作后在数据文件中留下碎片所致.OPTIMIZE ...

  7. JS中数组方法的封装之slice

    slice方法的功能 // 1) : 数组的截取 // 2) :slice(m,n): 从数组索引m开始,截取到索引n,但是不包含n;[前包后不包] // slice(m) : 从索引m开始,截取到末 ...

  8. Python 1.1数字与字符基础

    一. 基础数字操作 1.加减乘除以及内置函数: min(),  max(),  sum(),  abs(),  len()         math库: math.pi math.e, math.si ...

  9. STL---llist

    #include<iostream> #include<algorithm> #include<list> using namespace std; struct ...

  10. GoLand软件免激活的使用方法

    由于官方的Goland软件,免费使用期限是30天.如果你不购买产品的话,就需要不断的卸载和重装软件才能使用.不过要是您的资金允许的话,可以去http://www.jetbrains.com/go/bu ...