当任何匹配特定值的数据(NaN/缺失值,尽管可以选择任何值)被省略时,稀疏对象被“压缩”。 一个特殊的SparseIndex对象跟踪数据被“稀疏”的地方。 这将在一个例子中更有意义。 所有的标准Pandas数据结构都应用了to_sparse方法 -

import pandas as pd
import numpy as np ts = pd.Series(np.random.randn(10))
ts[2:-2] = np.nan
sts = ts.to_sparse()
print (sts)
Python

执行上面示例代码,得到以下结果 -

0   -0.391926
1 -1.774880
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 0.642988
9 -0.373698
dtype: float64
BlockIndex
Block locations: array([0, 8])
Block lengths: array([2, 2])
Shell

为了内存效率的原因,所以需要稀疏对象的存在。

现在假设有一个大的NA DataFrame并执行下面的代码 -

import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(10000, 4))
df.ix[:9998] = np.nan
sdf = df.to_sparse() print (sdf.density)
Python

执行上面示例代码,得到以下结果 -

0.0001
Shell

通过调用to_dense可以将任何稀疏对象转换回标准密集形式 -

import pandas as pd
import numpy as np
ts = pd.Series(np.random.randn(10))
ts[2:-2] = np.nan
sts = ts.to_sparse()
print (sts.to_dense())
Python

执行上面示例代码,得到以下结果 -

0   -0.275846
1 1.172722
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.612009
9 -1.413996
dtype: float64
Shell

稀疏Dtypes

稀疏数据应该具有与其密集表示相同的dtype。 目前,支持float64int64booldtypes。 取决于原始的dtypefill_value默认值的更改 -

  • float64 − np.nan
  • int64 − 0
  • bool − False

执行下面的代码来理解相同的内容 -

import pandas as pd
import numpy as np s = pd.Series([1, np.nan, np.nan])
print (s)
print ("=============================")
s.to_sparse()
print (s)
Python

执行上面示例代码,得到以下结果 -

0    1.0
1 NaN
2 NaN
dtype: float64
=============================
0 1.0
1 NaN
2 NaN
dtype: float64
Shell
 

Pandas稀疏数据的更多相关文章

  1. Pandas教程目录

    Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...

  2. Python人工智能学习笔记

    Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...

  3. Pandas | 26 疏离数据

    当任何匹配特定值的数据(NaN/缺失值,尽管可以选择任何值)被省略时,稀疏对象被“压缩”. 一个特殊的SparseIndex对象跟踪数据被“稀疏”的地方. 这将在一个例子中更有意义. 所有的标准Pan ...

  4. 数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化

    1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.t ...

  5. pandas基础-Python3

    未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...

  6. 10 Minutes to pandas

    摘要   一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型   十.画图      十一 ...

  7. 利用Python进行数据分析(15) pandas基础: 字符串操作

      字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...

  8. 利用Python进行数据分析(10) pandas基础: 处理缺失数据

      数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...

  9. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

随机推荐

  1. angular的过滤器

    angular有一些自带的过滤器,今天我就来写一下. 首先还是先把导入一个angular插件,再在我们的js中把模块和控制台写上(别忘了在html中写入模块名和在body中写入控制台名,当然控制台名可 ...

  2. KMS Event LOG

    The 12290 event entry gives a significant amount of information that can be used to figure out what ...

  3. Ad Exchange

    品友互动-基于大数据技术的人工智能决策平台 http://www.ipinyou.com.cn/about?flag=milestones

  4. 在.NET中读取嵌入和使用资源文件的方法

    转http://www.jb51.net/article/84660.htm 本文分别介绍了使用GetManifestResourceStream读取嵌入资源,和使用. resx资源文件嵌入资源,希望 ...

  5. 借鉴+总结!! mysql 客户端命令行下 查询数据并生成文件导出

    方式1:在mysql命令行环境下执行: sql语句+INTO OUTFILE +文件路径/文件名 +编码方式(可选)  例如: select * from user  INTO OUTFILE  '/ ...

  6. 标准编译安装(configure make)

      ./configure --prefix=安装目录 这里注意,安装目录可以自己选择地方,但是自己选择地方的话就要把编译出的bin.include.lib三个文件夹分别加入XXX XXX XXX三个 ...

  7. rest_framake之视图

    开始,先放大招 一  最原始的写法 前戏之序列化 class AuthorSerializer(serializers.ModelSerializer): class Meta: model = mo ...

  8. Scrapy框架-scrapy框架架构详解

    1.Scrapy框架介绍 写一个爬虫,需要做很多的事情.比如:发送网络请求.数据解析.数据存储.反反爬虫机制(更换ip代理.设置请求头等).异步请求等.这些工作如果每次都要自己从零开始写的话,比较浪费 ...

  9. 我的Android进阶之旅------>Java文件大小转换工具类 (B,KB,MB,GB,TB,PB之间的大小转换)

    Java文件大小转换工具类 (B,KB,MB,GB,TB,PB之间的大小转换) 有时候要做出如下所示的展示文件大小的效果时候,需要对文件大小进行转换,然后再进行相关的代码逻辑编写. 下面是一个Java ...

  10. CodeForces 215B Olympic Medal(数学啊)

    题目链接:http://codeforces.com/problemset/problem/215/B Description The World Programming Olympics Medal ...