题目描述

“……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字。只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯。还不赶快行动!”

你关上电视,心想:假设有n个不同的球星名字,每个名字出现的概率相同,平均需要买几瓶饮料才能凑齐所有的名字呢?

输入输出格式

输入格式:

整数n(2≤n≤33),表示不同球星名字的个数。

输出格式:

输出凑齐所有的名字平均需要买的饮料瓶数。如果是一个整数,则直接输出,否则应该直接按照分数格式输出,例如五又二十分之三应该输出为(复制到记事本):
53205 \frac{3}{20}5203​
第一行是分数部分的分子,第二行首先是整数部分,然后是由减号组成的分数线,第三行是分母。减号的个数应等于分母的为数。分子和分母的首位都与第一个减号对齐。

分数必须是不可约的。

输入输出样例

输入样例#1:

  1. 2
输出样例#1:

  1. 3

Solution:

  本题实际上求得就是收集到$n$个不同瓶子的期望买的瓶子个数。

  假设有$n$个瓶子,那么第一次买$1$个,一定能买到一个没有收集过的类型; 而第二次再买$1$个,有$\frac{n-1}{n}$的概率买到与第一次不同类型的,所以要买到一个与第一次不同类型的瓶子期望次数为$\frac{n}{n-1}$; 第三次买到与之前不同类型的瓶子期望次数就是$\frac{n}{n-2}$……以此类推,可知买到$n$个不同类型的瓶子的期望买的次数为$\sum\limits_{i=1}^{i\leq n}{\frac{n}{i}}$,那么最后只要模拟一下通分的过程就好了。

代码:

  1. #include<bits/stdc++.h>
  2. #define il inline
  3. #define ll long long
  4. #define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
  5. #define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
  6. using namespace std;
  7. ll n;
  8. ll top,bot=,p,q,x,y;
  9.  
  10. il ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
  11.  
  12. il ll num(ll x){ll tot=;while(x)tot++,x/=;return tot;}
  13.  
  14. int main(){
  15. ios::sync_with_stdio();
  16. cin>>n;top=n;
  17. For(i,,n) x=i,y=n,p=gcd(x,y),x/=p,y/=p,top=top*x+bot*y,bot*=x,p=gcd(top,bot),top/=p,bot/=p;
  18. if(top%bot==)printf("%lld",top/=bot);
  19. else{
  20. p=num(bot),q=num(top/bot);
  21. For(i,,q)printf(" ");
  22. printf("%lld\n%lld",top%bot,top/bot);
  23. while(p--)printf("-");printf("\n");
  24. For(i,,q)printf(" ");printf("%lld",bot);
  25. }
  26. return ;
  27. }

P1291 [SHOI2002]百事世界杯之旅的更多相关文章

  1. P1291 [SHOI2002]百事世界杯之旅(概率)

    P1291 [SHOI2002]百事世界杯之旅 设$f(n,k)$表示共n个名字,剩下k个名字未收集到,还需购买饮料的平均次数 则有: $f(n,k)=\frac{n-k}{n}*f(n,k) + \ ...

  2. 洛谷 P1291 [SHOI2002]百事世界杯之旅 解题报告

    P1291 [SHOI2002]百事世界杯之旅 题目描述 "--在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽 ...

  3. luogu P1291 [SHOI2002]百事世界杯之旅

    题目链接 luogu P1291 [SHOI2002]百事世界杯之旅 题解 设\(f[k]\)表示还有\(k\)个球员没有收集到的概率 再买一瓶,买到的概率是\(k/n\),买不到的概率是\((n-k ...

  4. 洛谷P1291 [SHOI2002]百事世界杯之旅 [数学期望]

    题目传送门 百事世界杯之旅 题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听, ...

  5. 洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)

    题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...

  6. 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP

    题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...

  7. ●洛谷P1291 [SHOI2002]百事世界杯之旅

    题链: https://www.luogu.org/recordnew/show/5861351题解: dp,期望 定义dp[i]表示还剩下i个盖子没收集时,期望还需要多少次才能手机完. 初始值:dp ...

  8. LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)

    传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...

  9. 洛谷P1291 [SHOI2002]百事世界杯之旅

    题目链接: kma 题目分析: 收集邮票的弱弱弱弱化版,因为是期望,考虑倒推 设\(f[i]\)表示现在已经买齐了\(i\)种,距离买完它的剩余期望次数 那么下一次抽有\(\frac{i}{n}\)的 ...

随机推荐

  1. 全国Uber优步司机奖励政策 (1月25日-1月31日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. 北京Uber优步司机奖励政策(2月19日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. orm4sqlite

    //-------------------------------------------------------------------------- // // Copyright (c) BUS ...

  4. dsp6657的串口学习

    1. 打算用dsp6657学习下,先用串口实验吧.找一下芯片支持库Chip support libraries,路径D:\ti\pdk_C6657_1_1_1_4\packages\ti\csl,新建 ...

  5. 网易七鱼 Android 高性能日志写入方案

    本文来自网易云社区 作者:网易七鱼 Android 开发团队 前言 网易七鱼作为一款企业级智能客服系统,对于系统稳定性要求很高,不过难保用户在使用中不会出现问题,而 Android SDK 安装在用户 ...

  6. Selenium 入门到精通系列:四

    Selenium 入门到精通系列 PS:鼠标右键.鼠标悬停.键盘操作方法 例子 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019 ...

  7. 【SpringCloud】第七篇: 高可用的分布式配置中心(Spring Cloud Config)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  8. hello word!------为什么开通博客以及自我介绍

    来北京已经一年半的日子了,已经完全成功熟练的成为了另一个我,没有了半年前刚来时的那种焦虑.急躁和格格不入. 回想起来那段时间,大概是我人生中非常重要的时期了,去年那个夏天,只身一人背上行囊踏上了北上的 ...

  9. Struts2(八.添加用户多张照片实现文件上传功能)

    1.modify.jsp 在modify.jsp修改用户信息页面实现文件上传,添加用户照片的功能 如果是文件上传,method必须是post,必须指定enctype <form method=& ...

  10. MD5接口解密操作_接口签名校验

    很多HTTP接口在传参时,需要先对接口的参数进行数据签名加密如以下POST接口 http://localhost:8080/pinter/com/userInfo 参数为{"phoneNum ...