题目描述

经过了几周的辛苦工作,贝茜终于迎来了一个假期.作为奶牛群中最会社交的牛,她希望去拜访N(1<=N<=50000)个朋友.这些朋友被标号为1..N.这些奶牛有一个不同寻常的交通系统,里面有N-1条路,每条路连接了一对编号为C1和C2的奶牛(1 <= C1 <= N; 1 <= C2 <= N; C1<>C2).这样,在每一对奶牛之间都有一条唯一的通路. FJ希望贝茜尽快的回到农场.于是,他就指示贝茜,如果对于一条路直接相连的两个奶牛,贝茜只能拜访其中的一个.当然,贝茜希望她的假期越长越好,所以她想知道她可以拜访的奶牛的最大数目.

输入

第1行:单独的一个整数N

第2..N行:每一行两个整数,代表了一条路的C1和C2.

输出

单独的一个整数,代表了贝茜可以拜访的奶牛的最大数目.

样例输入

7

6 2

3 4

2 3

1 2

7 6

5 6

样例输出

4


题解

裸的树形dp。

f[x]代表拜访x时最大数量,g[x]代表不拜访x时最大数量。

那么易推得f[x]=1+∑g[to[i]],g[x]=∑max(f[to[i]],g[to[i]])。

答案即为max(f[1],g[1])。

  1. #include <stdio.h>
  2. #include <string.h>
  3. int to[100001] , next[100001] , head[50001] , f[50001] , g[50001] , cnt;
  4. int max(int a , int b)
  5. {
  6. return a > b ? a : b;
  7. }
  8. void add(int x , int y)
  9. {
  10. to[cnt] = y;
  11. next[cnt] = head[x];
  12. head[x] = cnt ++ ;
  13. }
  14. void dp(int x , int last)
  15. {
  16. int i , y;
  17. f[x] = 1;
  18. for(i = head[x] ; i != -1 ; i = next[i])
  19. {
  20. y = to[i];
  21. if(y == last)
  22. continue;
  23. dp(y , x);
  24. f[x] += g[y];
  25. g[x] += max(f[y] , g[y]);
  26. }
  27. }
  28. int main()
  29. {
  30. int n , i , x , y;
  31. scanf("%d" , &n);
  32. memset(head , -1 , sizeof(head));
  33. for(i = 1 ; i <= n - 1 ; i ++ )
  34. {
  35. scanf("%d%d" , &x , &y);
  36. add(x , y);
  37. add(y , x);
  38. }
  39. dp(1 , 0);
  40. printf("%d\n" , max(f[1] , g[1]));
  41. return 0;
  42. }

【bzoj2060】[Usaco2010 Nov]Visiting Cows拜访奶牛 树形dp的更多相关文章

  1. BZOJ 2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛 树形DP

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  2. [bzoj2060][Usaco2010 Nov]Visiting Cows 拜访奶牛_树形dp

    Visiting Cows 拜访奶牛 bzoj-2060 Usaco-2010 Nov 题目大意:题目链接. 注释:略. 想法:看起来像支配集. 只是看起来像而已. 状态:dp[pos][flag]表 ...

  3. [codevs1380]没有上司的舞会([BZOJ2060][Usaco2010 Nov]Visiting Cows 拜访奶牛)

    [codevs1380]没有上司的舞会 试题描述 Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个快乐指数.现 ...

  4. BZOJ2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛

    n<=50000个点的树,求选最多不相邻点的个数. f[i][0]=sigma max(f[j][0],f[j][1]),j为i的儿子 f[i][1]=sigma f[j][0],j同上 死于未 ...

  5. BZOJ 2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛( dp )

    树形dp..水 ------------------------------------------------------------------------ #include<cstdio& ...

  6. 2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛

    2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 252  Solved: 1 ...

  7. 【BZOJ】2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛(树形dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2060 裸的树形dp d[x][1]表示访问x的数量,d[x][0]表示不访问x的数量 d[x][1] ...

  8. 【bzoj2060】[Usaco2010 Nov]Visiting Cows拜访奶牛

    题目描述 经过了几周的辛苦工作,贝茜终于迎来了一个假期.作为奶牛群中最会社交的牛,她希望去拜访N(1<=N<=50000)个朋友.这些朋友被标号为1..N.这些奶牛有一个不同寻常的交通系统 ...

  9. 【BZOJ】2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛

    [算法]树形DP [题解]没有上司的舞会?233 f[x][0]=∑max(f[v][0],f[v][1]) f[x][1]=(∑f[v][0])+1 #include<cstdio> # ...

随机推荐

  1. c#调用c++库函数

    如果是非托管的,就用DllImport,举例    using System;    using System.Runtime.InteropServices;    class MainApp    ...

  2. codechef Table Game(博弈)

    题意 题目链接 很难概括.. Sol (因为比赛还没结束,所以下面讲的可能是“非官方”“正解”) maya这题我前前后后 断断续续的做了一个星期才A掉.CC一场challenge出两道打表题可有点过分 ...

  3. 北京Uber优步司机奖励政策(4月3日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. python的bif介绍

    Python是面向对象的解释性程序设计语言,Python的语法简洁,特点是用空白符作为语句缩进. BIF(bulit in function)内置函数,就是Python自身提供的函数功能,编程者直接使 ...

  5. POM中常用依赖包

    <?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven ...

  6. linux-flock文件锁之实际运用

    vi test.sh #! /bin/bash echo "Hello World" touch test.lock #随便命名 [root@localhost ~]# flock ...

  7. 两个有序数组合并成一个有序数组(要求时间复杂度为O(n))

    面试题: 怎样把两个有序数组合并成有序数组呢 逻辑步骤: 1.假设两个数组为A和B 2.A和B都是从小到大的顺序进行排列 ** 1.我们可以直接比较两个数组的首元素,哪个小就把这个小元素放入可变数组. ...

  8. ubuntu 14.04 lts LAMP配置

    一.目标 创建服务器环境,主要包括:Apache2.4.7 serverPHP 5.5.9Mysql 5.5.49扩展:MemcacheMcrypt 二.准备工作 1.服务器系统版本 Ubuntu s ...

  9. ElasticSearch-Java-low-level-rest-client官方文档翻译

    人肉翻译,非谷歌机翻,部分地方添加了个人的理解,并做了分割,如有错误请在评论指出.转载请指明原链接,尊重个人劳动成果.        High-Level-Rest-Client基于Low-Level ...

  10. 接口测试工具postman(七)下载文件接口

    按照一般请求接口,配置好接口地址以及参数,点击Send and Download 按钮,执行请求的同时会下载文件